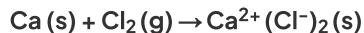
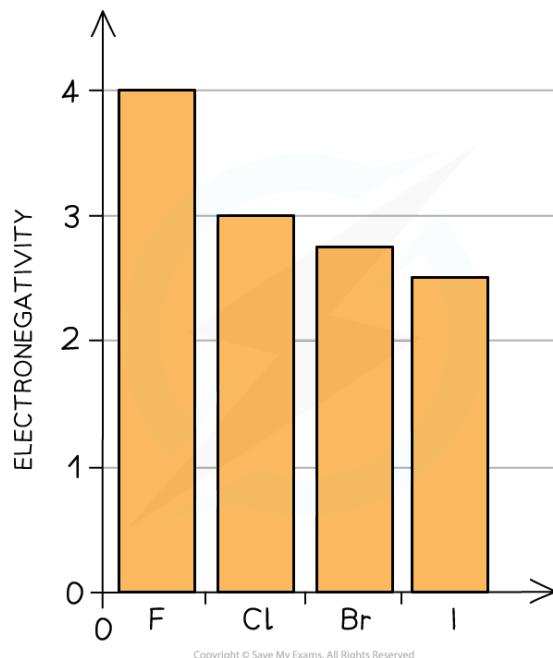


The Chemical Properties of the Halogen Elements & the Hydrogen Halides


Contents

- * Chemical Properties of the Halogens & Hydrogen Halides

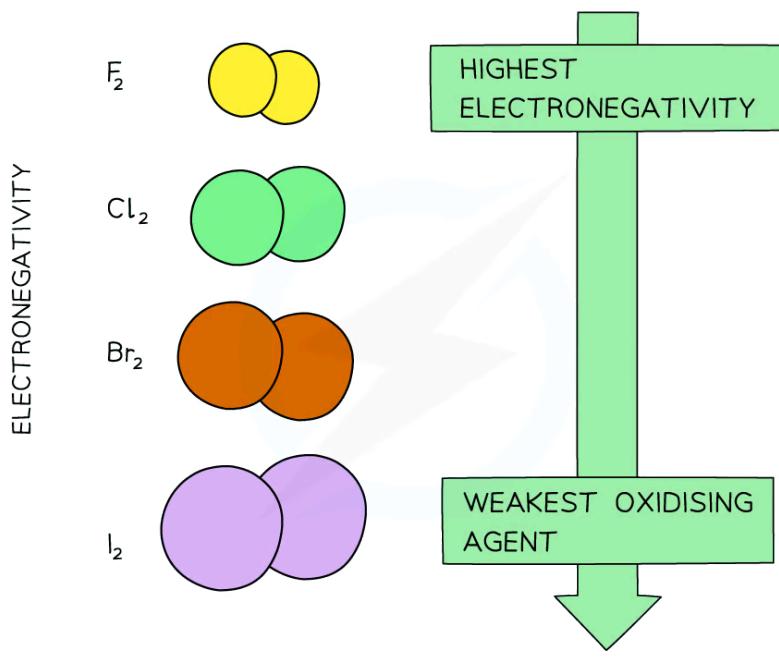

Group 17: Oxidising Agents

- Halogens react with metals by accepting an electron from the metal atom to become an ion with 1- charge, e.g.

- Halogens are therefore **oxidising agents**:
 - Halogens **oxidise** the metal by removing an electron from the metal (the oxidation number of the metal increases)
 - Halogens become **reduced** as they gain an extra electron from the metal atom (the oxidation number of the halogen decreases)
- The **oxidising power** of the halogens **decreases** going **down the group** (the halogens get less reactive)
- This can be explained by looking at their electronegativities:

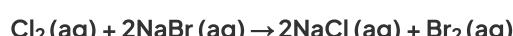
Graph of Halogen electronegativity

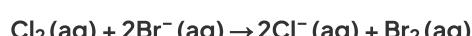
The electronegativity of the halogens decreases going down the group


- The **electronegativity** of an atom refers to how strongly it attracts electrons towards itself in a covalent bond
- The decrease in electronegativity is linked to the size of the halogens

Your notes

- Going down the group, the atomic radii of the elements increase which means that the outer shells get further away from the nucleus
- An 'incoming' electron will therefore experience more **shielding** from the attraction of the positive nuclear charge
- The halogens' ability to accept an electron (their **oxidising power**) therefore decreases going down the group


Trend in Halogen electronegativity


Copyright © Save My Exams. All Rights Reserved

With increasing atomic size of the halogens (going down the group) their electronegativity, and therefore oxidising power, decreases

- The reactivity of halogens is also shown by their **displacement reactions** with other halide ions in solutions
- A **more reactive** halogen can displace a **less reactive** halogen from a halide solution of the less reactive halogen
 - E.g. The addition of chlorine water to a solution of bromine water:

- The chlorine has displaced the bromine from the solution as it is more reactive which can be summarised in the following ionic equation:

Group 17: Reaction with Hydrogen

- Halogens react with hydrogen gas to form **hydrogen halides**

Your notes

- Due to the decrease in reactivity of the halogens going down the group, the reactions between halogen and hydrogen gas become less vigorous
- The table below shows a summary of the reaction between halogen and hydrogen gas


Reaction between halogen & hydrogen gas table

Chemical equation	Observations
$H_2(g) + F_2(g) \rightarrow 2HF(g)$	Reacts explosively, even in cool / dark conditions
$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$	Reacts explosively in sunlight
$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$	Reacts slowly on heating
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	Forms an equilibrium mixture on heating

Thermal Stability of the Hydrogen Halides

- **Thermal stability** refers to how well a substance can resist breaking down when heated
 - A substance that is thermally stable will break down at high temperatures
- The hydrogen halides formed from the reaction of halogen and hydrogen gas decrease in **thermal stability** going down the group
- The decrease in thermal stability can be explained by looking at the bond energies of the hydrogen-halogen bond
 - Going down the group, the atomic radius of the halogens increases
 - The overlap of its outer shell with a hydrogen atom therefore gives a longer bond length
 - The longer the bond, the weaker it is, and the less energy required to break it
- As the bonds get weaker, the hydrogen halogens become less stable to heat going down the group

Trend in thermal stability of the hydrogen halides

Your notes

Copyright © Save My Exams. All Rights Reserved

The thermal stability of the hydrogen halide decreases going down the group as their bonds become weaker due to the increased atomic radius of the halogens