$Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$ ## CIE A Level Chemistry ## 36.1 Organic Synthesis (AL) ### **Contents** - * Elucidating Organic Molecules - * Multi-step Synthetic Routes - * Analysis of Synthetic Routes ## **Elucidating Organic Molecules** # Your notes ## **Elucidating Organic Molecules** Students should be able to identify organic functional groups and recall their properties and the reactions that they undergo #### Properties of functional groups - In addition to the functional groups mentioned in the AS course, students should also be familiar with additional functional groups and their properties including: - Arenes - Halogenoarenes - Carboxylic acids (and derivatives) - Phenols - Amides - Amino acids - Acyl chlorides Overview of additional functional groups These functional groups are extra to those already covered in 21.1 Organic Synthesis #### Reactions of functional groups - Students should also be able to recall: - The reactions by which these functional groups can be produced including: - Benzoic acid - Acyl chlorides - Amides - The reactions that these functional groups undergo #### **Producing functional groups** #### Benzoic acid - Benzoic acid is produced, from methylbenzene, in two steps: - 1. An oxidation reaction by refluxing with hot alkaline KMnO4 to form potassium benzoate - 2. A protonation reaction with dilute HCI #### Production of benzoic acid #### Benzoic acid is produced from methylbenzene in 2 steps #### **Acyl chlorides** - Acyl chlorides are formed by an electrophilic substitution reaction of the parent carboxylic acid - There are various possible reagents: - Solid PCl₅ producing the acyl chloride along with POCl₃ and HCl - Liquid PCI₃ and heat producing the acyl chloride and H₃PO₃ - Liquid SOCl₂ producing the acyl chloride along with SO₂ and HCl #### Production of acyl chlorides Using ethanoic acid as an example, the reactions all produce acyl chlorides with different byproducts due to the different reagents #### **Amides** - Amides are formed by a condensation reaction, at room temperature, of an acyl chloride - The possible amides that can be produced are substituted amides and non-substituted amides - Non-substituted amides are produced by the reaction with ammonia - Substituted amides are produced by the reaction with primary amines Production of substituted and non-substituted amides Using propanoyl chloride as an example, the reaction with ammonia produces a non-substituted amide while the reaction with primary amines produces substituted amides #### Reacting functional groups #### Electrophilic substitution reactions of arenes - You should be able to provide the mechanisms for specific electrophilic substitution reactions of benzene: - The electrophile, E⁺, for a **halogenation** reaction, is a positive halogen ion, X⁺ - The electrophile, E⁺, for a **nitration** reaction, is the nitronium ion, NO₂⁺ - The electrophile, E⁺, for an **alkylation** reaction, is a carbocation, R⁺ - The electrophile, E⁺, for an **acylation** reaction, is an **acyl group**, RCO⁺ - An acyl group is an alkyl group containing a carbonyl, C=O group #### Specific electrophilic substitution reactions of arenes Using different electrophiles, E⁺, the mechanisms for halogenation, nitration, alkylation and acylation are shown Copyright © Save My Exams. All Rights Reserved #### Hydrogenation of arenes - The hydrogenation of benzene is an addition reaction - Benzene is heated with hydrogen gas and a nickel or platinum catalyst to form cyclohexane Hydrogenation of benzene #### The hydrogenation of benzene causes a complete loss of aromaticity #### Esterification of phenol - The esterification reaction of carboxylic acids with phenol is slow, so acyl chlorides are used - The reaction between ethanoyl chloride and phenol is similar to the reaction of ethanoyl chloride and ethanol, although it is not as vigorous - The products of this reaction are phenyl ethanoate and hydrogen chloride gas - The reaction between benzoyl chloride and phenol is also similar to the reaction of ethanoyl chloride and ethanol - The products of this reaction are phenyl benzoate and hydrogen chloride gas Formation of esters from the reaction of alcohols with acyl chlorides ## The first part of the ester name comes from the alcohol and the second part of the ester name comes from the acyl chloride - To make the reactions with acyl chlorides and aryl chlorides occur in a more timely fashion, phenol is converted into sodium phenoxide by heating with sodium hydroxide - This forms the phenoxide ion which is more reactive - The hydrogen chloride product is replaced by water and sodium chloride #### Acid / base reactions of phenol - Phenols dissolve in alkaline solutions to undergo acid-base reactions with bases forming a soluble salt and water - Molten phenols also react vigorously with reactive metals such as sodium (Na) in an acidbase reaction forming a soluble salt and hydrogen gas #### Acid / base reactions of phenol Phenols behave as weak acids in alkaline conditions and molten phenols react vigorously with reactive metals to form a soluble salt and hydrogen gas #### Nitration of phenol - Phenols undergo electrophilic substitution reactions with dilute nitric acid (HNO₃) at room temperature to give a mixture of 2-nitrophenol and 4-nitrophenol - When **concentrated HNO**₃ is used, the product will be 2,4,6-trinitrophenol instead **Nitration of phenol** Your notes Phenols undergo nitration when reacted with dilute HNO_3 at room temperature #### Bromination of phenol • Phenols undergo electrophilic substitution with bromine water at room temperature forming a white precipitate of 2,4,6-tribromophenol #### Phenol in bromination reactions Phenols undergo bromination when reacted with bromine water at room temperature ## **Multi-step Synthetic Routes** # Your notes ## **Multi-Step Synthetic Routes** - A large number of organic products are made from a few starting compounds using appropriate reagents and conditions - Knowing how organic functional groups are related to each other is key to the synthesis of a given molecule - The main functional groups you need to know are - Alkanes - Alkenes - Haloalkanes - Nitriles - Amines - Alcohols - Carbonyls (aldehydes & ketones) - Hydroxynitriles - Carboxylic acids - Esters - Acyl chlorides - Primary and secondary amides ## Exam Tip You also need to be able to identify the functional groups of these chemicals in structures that are given to you ### **Aliphatic Reaction Pathways** • The key interconversions between functional groups are summarised here: #### **Aliphatic Reactions Table** | Reactant | Product | Reagents | Reaction | |----------|-----------------|------------------------|---| | Alkene | Hydrogen halide | Electrophilic addition | - | | Alkene | Alcohol | Hydration | Steam + H ₂ SO ₄ / heat | #### $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$ | Reactant | Product | Reagents | Reaction | |----------------------|----------------------|--|---| | Alkene | Alkane | Hydrogen + Ni catalyst / 150 °C | Electrophilic addition /
hydrogenation | | Alcohol | Alkene | Al ₂ O ₃ or conc. acid / heat | Elimination / dehydration | | Alcohol | Haloalkane | NaX + H ₂ SO ₄ / heat under reflux | Nucleophilic substitution | | Haloalkane | Alcohol | NaOH (aq) / heat under reflux | Nucleophilic substitution | | Alkane | Haloalkane | Halogen / UV light | Free radical substitution | | Primary alcohol | Aldehyde | Oxidation | K ₂ Cr ₂ O ₇ / H ₂ SO ₄ / Distillation | | Secondary
alcohol | Ketone | Oxidation | Heat | | Primary alcohol | Carboxylic acid | Oxidation | Heat under reflux | | Aldehyde | Primary alcohol | NaBH ₄ /H ₂ O Reduction | | | Ketone | Secondary
alcohol | NaBH ₄ / H ₂ O, NaCN | Reduction | | Haloalkane | Nitrile | Nucleophilic substitution | | | Haloalkane | Amine | NH ₃ / ethanol | Nucleophilic substitution | | Nitrile | Carboxylic acid | H ₂ O/HCl | Hydrolysis | | Aldehyde | Hydroxynitrile | NaCN / H ⁺ Nucleophilic addition | | | Alcohol | Ester | Esterification Carboxylic acid / H ₂ SO | | | Carboxylic acid | Ester | Alcohol / H ₂ SO ₄ Esterification | | $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$ | Reactant | Product | Reagents | Reaction | |-----------------|-----------------|-----------------------------|-----------------------------------| | Ester | NaOH(aq) | Alkaline hydrolysis | Carboxylate salt and alcohol | | Ester | Carboxylic acid | Dilute acid Acid hydrolysis | | | Carboxylic acid | Acyl chloride | SOCI ₂ | Chlorination | | Acylchloride | Carboxylic acid | H ₂ O | Hydrolysis | | Acyl chloride | Primary amide | NH ₃ | Nucleophilic addition elimination | | Acyl chloride | Secondary amide | Primary amine | Nucleophilic addition elimination | ## **Aromatic Reaction Pathways** • The key aromatic reactions are summarised here: #### **Aromatic Reactions Table** | Reactant | Product | Reagents | Reaction | |----------|---------------|--|---| | Benzene | Methylbenzene | CH ₃ CI / AICI ₃ | Alkylation / Electrophilic substitution | | Benzene | Bromobenzene | Br₂/FeBr₃ | Bromination / Electrophilic
substitution | | Benzene | Chlorobenzene | Cl ₂ /AlCl ₃ | Chlorination / Electrophilic substitution | #### $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$ | Reactant | Product | Reagents | Reaction | |----------------|--|--|---| | | | | | | Benzene | Nitrobenzene | HNO ₃ /H ₂ SO ₄ | Nitration / Electrophilic
substitution | | Nitrobenzene | Aminobenzene / phenylamine /
aniline | Sn/HCl | Reduction | | Aminobenzene | 2,4,6-tribromoaminobenzene / 2,4,6-tribromoaniline | Bromine | Electrophilic substitution | | Benzene | Phenylethanone | CH3COCI/AICI3 | Acylation / Electrophilic
substitution | | Phenylethanone | 1-Phenylethanol | NaBH ₄ | Reduction | Head to www.savemyexams.com for more awesome resources | Reactant | Product | Reagents | Reaction | |----------|---------|----------|----------| | | | | | #### Designing a Reaction Pathway - The given molecule is usually called the **target molecule** and chemists try to design a synthesis as efficiently as possible - Designing a reaction pathway starts by drawing the structures of the target molecule and the starting molecule - Determine if they have the **same number** of carbon atoms - If you need to lengthen the carbon chain you will need to put on a **nitrile group** by nucleophilic substitution - Work out all the compounds that can be made from the starting molecule and all the molecules that can be made into the target molecule - Match the groups they have in common and work out the reagents and conditions needed Head to www.savemyexams.com for more awesome resources Suggest how the following synthesis could be carried out: Ethene to 1-aminopropane **Answer** - 1 REACT WITH HCL AT ROOM TEMPERATURE - 2 REACT WITH KCN IN ETHANOL + HEAT UNDER REFLUX - 3 REDUCE WITH LIALH4 IN DRY ETHER + HEAT Copyright © Save My Exams. All Rights Reserved Sound knowledge of all of the different reactions is beneficial as the A-level course simply states that you should be able to design a multistage synthesis Past papers generally go to four steps in a multistep reaction although there is no clear limit stated $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$ ## **Analysis of Synthetic Routes** # Your notes ## **Analysis of Synthetic Routes** ### **Analysis of Synthetic Routes** - Students should be able to apply their knowledge of functional groups and their reactions by critically analysing a given synthetic route in terms of: - The type of reaction - The reagents used for each step - Any possible by-products ### Worked example ## Analysis of synthetic routes Some reactions of compound A, are shown below - 1. Give the structure of compound **B** and state the type of reaction by which this compound is formed from compound A - 2. What are the suitable reagents for reaction **2**? - 3. Suggest a more effective way to synthesise compound **D** from compound **A** - 4. What are the possible by-products of reaction **4**? #### Answer 1 - This is a hydrogenation reaction - The benzene ring becomes hydrogenated to form a cyclohexane - The structure of compound **B** is: • The COOH group is unlikely to be reduced by H₂, Pt (s) / Ni (s) in this case #### Answer 2 - The ethyl (-CH₂CH₃) in compound **A** has been oxidised to a carboxylic acid (-CH₂COOH) - The reagents for this oxidation to occur are alkaline KMnO₄ followed by dilute H₂SO₄ #### Answer 3 - Compound D contains an ester (-COOCH₃) group which is formed from the esterification reaction between compound A and methanol (CH₃OH) - By carrying out an electrophilic substitution reaction of compound A with chlorine (Cl₂), the carboxylic acid (-COOH) group is converted into an acyl chloride (-COCI) group which is more reactive - The reaction of this acyl chloride with methanol will cause the reaction to occur faster and will give a higher yield of the ester (compound **D**) as the reaction goes to completion #### Answer 4 - Reaction 4 is a reduction of the carboxylic acid (-COOH) group in compound A to a primary alcohol (R-COH) - The by-product of this reduction is water (H₂O)