

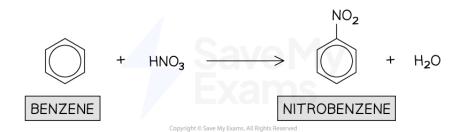
 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

CIE A Level Chemistry

34.2 Phenylamine & Azo Compounds

Contents

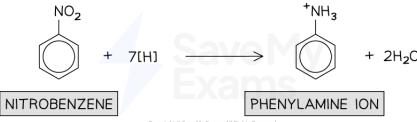
- * Production & Reactions of Phenylamine
- * Relative Basicity of Ammonia, Ethylamine & Phenylamine
- * Azo Compounds


Production & Reactions of Phenylamine

Your notes

Preparation of Phenylamine

- Phenylamine is an organic compound consisting of a benzene ring and an amine (NH₂) functional group
- It can be produced in a three-step synthesis reaction followed by the separation of phenylamine from the reaction mixture
 - Step 1 Nitration
 - Benzene undergoes nitration with concentrated nitric acid (HNO₃) and concentrated sulfuric acid (H₂SO₄) at 25 to 60 °C to form nitrobenzene


Nitration of benzene

Benzene forms nitrobenzene by reacting with the NO₂⁺ electrophile formed by concentrated nitric acid and concentrated sulfuric acid

- Step 2 Reduction
 - Nitrobenzene is reduced with hot tin (Sn) and concentrated hydrochloric acid (HCl) under reflux to form an acidic mixture that contains the organic product C₆H₅N⁺H₃

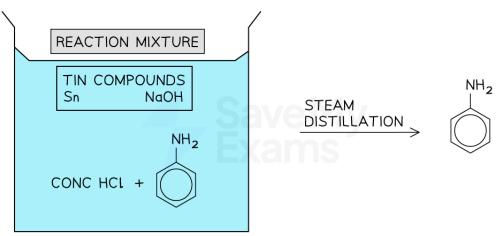
Reduction of nitrobenzene


Copyright © Save My Exams. All Rights Reserved

Refluxing nitrobenzene with hot tin and concentrated hydrochloric acid forms the phenylamine ion

- Step 3 Deprotonation
 - Sodium hydroxide (NaOH) is added to the acidic reaction mixture to deprotonate the phenylamine ion to phenylamine

Deprotonation of the phenylamine ion



The hydroxide ion from sodium hydroxide deprotonates the phenylamine ion, forming the desired phenylamine

- Separation / purification
 - The phenylamine is then separated from the reaction mixture by steam distillation
 Separation of phenylamine

Copyright © Save My Exams. All Rights Reserved

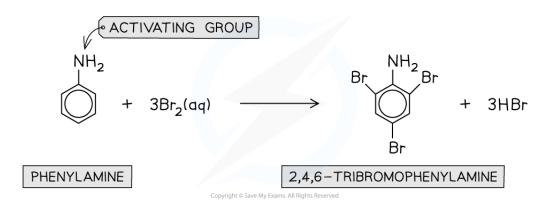
Steam distillation is used to separate the phenylamine from the reaction mixture

The overall reaction forming phenylamine from benzene

$$\frac{\text{CONC. HNO}_3}{\text{CONC. H}_2\text{SO}_4} \xrightarrow{\text{Sn/CONC. HCl}} \frac{\text{NH}_2}{\text{NaOH (aq)}} + 2\text{H}_2\text{O}$$

$$\frac{\text{BENZENE}}{\text{NITROBENZENE}}$$

The first reaction step is nitration and the second reaction step is reduction followed by deprotonation


Reactions of Phenylamine

- Both the benzene ring as well as the -NH₂ group in **phenylamine** can take part in chemical reactions
- These reactions include
 - The **bromination** of phenylamine
 - Formation of a diazonium salt

Bromination of phenylamine

- Phenylamines react in electrophilic substitution reactions in a similar way as phenols
- The lone pair of electrons on the nitrogen atom in phenylamines donate electron density into the benzene ring
 - In phenois, the oxygen atom donates its lone pair of electrons instead
- The delocalisation of the electrons causes an increased electron density in the benzene ring
- The benzene ring, therefore, becomes activated and becomes more readily attacked by electrophiles
- The incoming electrophiles are directed to the 2,4 and 6 positions
- Phenylamines, therefore, react under milder conditions with **aqueous bromine** at **room temperature** to form 2,4,6-tribromophenylamine

Bromination of phenylamine

The bromination of phenylamine produces 2,4,6-tribromophenylamine

Formation of diazonium salt

- Diazonium compounds are very reactive compounds containing an -N₂+ group
- The amine (-NH₂) group of phenylamines will react with nitric(III) acid (HNO₂) at a temperature below 10
 °C to form diazonium salts
 - Since nitric(III) acid is unstable, it has to be made in the **test-tube** by reacting sodium nitrite (NaNO₂) and **dilute acid** (such as HCI)
- These diazonium salts are so unstable that they will, upon further warming with water, form phenol

Reacting nitrous acid with phenylamine to form a diazonium salt

Your notes

Phenylamine can form an unreactive diazonium salt which thermally decomposes to phenol

Relative Basicity of Ammonia, Ethylamine & Phenylamine

Your notes

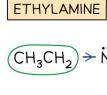
Relative Basicity of Aqueous Ammonia, Ethylamine & Phenylamine

- Ammonia and amines act as bases as they can donate their lone pair of electrons to form a dative covalent bond with a proton
- The basicity of the amines depends on how readily available their lone pair of electrons is
- Electron-donating groups (such as alkyl groups) increase the electron density on the nitrogen atom
 and cause the lone pair of electrons to become more available for dative covalent bonding
 - The amine becomes **more** basic
- Delocalisation of the lone pair of electrons into an aromatic ring (such as a benzene ring) causes the lone pair of electrons to become less available for dative covalent bonding
 - The amine becomes **less** basic

Comparing basicity of ammonia, ethylamine & phenylamine

• The order of basicity of ammonia, ethylamine and phenylamine is as follows:

Ethylamine > ammonia > phenylamine


STRONGEST BASE WEAKEST BASE

- This trend can be explained by looking at the groups attached to the amine (-NH₂) group
- In ethylamine, the electron-donating alkyl group donates electron density to the nitrogen atom causing its lone pair to become more available to form a dative covalent bond with a proton
- Ammonia lacks an electron-donating group
 - Hence, it is less basic than ethylamine
 - However, it is more basic than phenylamine as the lone pair on the nitrogen is not delocalised
- In phenylamine, the lone pair of electrons overlap with the conjugated system on the benzene ring and become delocalised
 - As a result, the lone pair of electrons become less readily available to form a bond with a proton

Trends in the basicity of ammonia, ethylamine, and phenylamine

Head to www.savemyexams.com for more awesome resources

POSITIVE INDUCTIVE EFFECT ALKYL GROUP DONATES ELECTRON DENSITY TO THE N CAUSING ITS LONE PAIR OF ELECTRONS TO BECOME MORE AVAILABLE STRONGEST Your notes

- NO ELECTRON DONATING GROUPS TO CAUSE POSITIVE INDUCTIVE EFFECT
- NO AROMATIC RINGS TO CAUSE DELOCALISATION OF NITROGEN'S LONE PAIR OF ELECTRONS

PHENYLAMINE

NITROGEN'S LONE PAIR OF ELECTRONS
BECOMES DELOCALISED IN THE BENZENE
RING AND IS THEREFORE LESS
AVAILABLE TO FORM A DATIVE
COVALENT BOND WITH H⁺

WEAKEST BASE

Copyright © Save My Exams. All Rights Reserved

The positive inductive effect of electron donating groups increases the basicity of an amine, while the negative inductive effect of electron withdrawing groups decreases the basicity of an amine

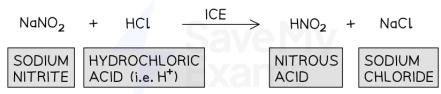
Azo Compounds

Your notes

Azo Compounds

- **Azo** (or **diazonium**) **compounds** are organic compounds that have an R₁-N=N-R₂ group
- They are often used as **dyes** and are formed in a **coupling reaction** between the **diazonium ion** and an **alkaline solution** of **phenol**

Example compound containing an azo group



Azo compounds are characterized by the presence of an R_1 -N=N- R_2 group

Coupling of benzenediazonium chloride with phenol in NaOH

- Azo compounds can be formed from the coupling reaction of a benzenediazonium chloride salt with alkaline phenol
- Making an azo dye is a **multi-step process**:
 - Step 1 Formation of nitrous acid
 - The nitrous acid, HNO₂, is so unstable that it needs to be prepared in a test-tube by reacting sodium nitrite (NaNO₂) and dilute hydrochloric acid (HCl) while keeping the temperature below 10 °C using **ice**

Forming nitrous acid, HNO₂

Copyright © Save My Exams. All Rights Reserved

Nitrous acid can be prepared in a test-tube by reacting sodium nitrate with dilute hydrochloric acid

- Step 2 Diazotisation
 - This is the reaction between nitrous acid and phenylamine to form a diazonium ion
 - Dilute acid is used for this step, e.g. HCl
 - The reaction mixture must be kept < 10 °C using ice to prevent the diazonium ion from **thermally decomposing** to benzene and nitrogen

Forming benzenediazonium chloride

Copyright © Save My Exams. All Rights Reserved

Benzenediazonium chloride is an unstable diazonium salt

Step 3 - Coupling reaction

- The diazonium ion acts as an **electrophile** and substitutes into the benzene ring of the **phenol**, at the 4th position
- Alkaline conditions are required to deprotonate the organic product and form the azo compound
 Forming the azo compound

The azo compound is formed by the electrophilic substitution reaction of benzenediazonium chloride and phenol

Copyright © Save My Exams. All Rights Reserved

- The **delocalised** electrons in the π bonding systems of the two benzene rings are **extended** through the -N=N- which acts as a **bridge** between the two rings
- As a result of the delocalisation of electrons throughout the compound, azo compounds are very stable

Making other azo dyes

- Other dyes can be formed via a **similar route** as described above
- For example, the **yellow dye** can be formed from the **coupling reaction** between **benzenediazonium chloride** and **C**₆**H**₅**N**(**CH**₃)₂ instead of phenol (C₆**H**₅OH)

Making yellow azo dye

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

The yellow azo dye is formed via a coupling reaction between benzenediazonium chloride and $C_6H_5N(CH_3)_2$