# AQA A Level Chemistry

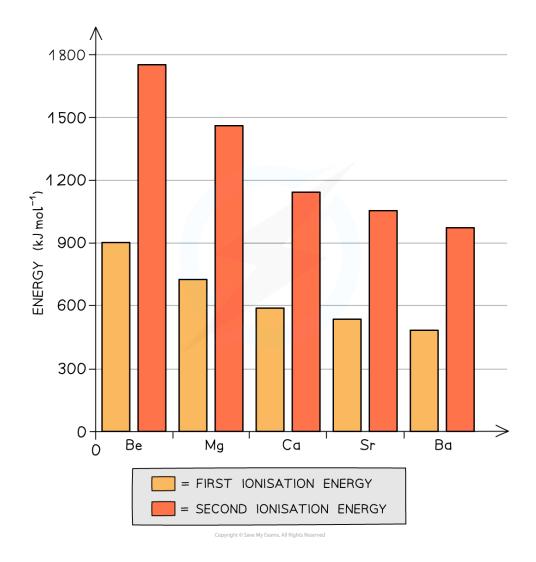


## Group 2, the Alkaline Earth Metals

### **Contents**

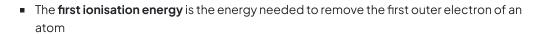
- \* Trends in Group 2: The Alkaline Earth Metals
- \* Solubility of Group 2 Compounds: Hydroxides & Sulfates
- \* Reactions of Group 2
- \* Uses of Group 2 Elements




## Trends in Group 2: The Alkaline Earth Metals



## **Group 2: Trends**

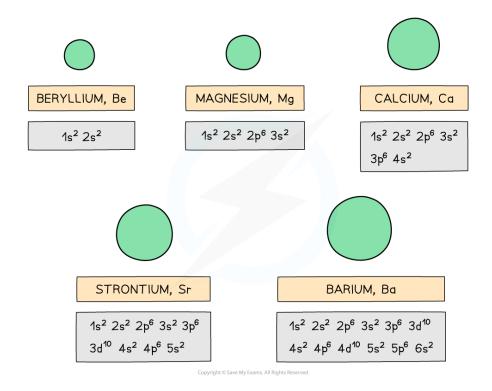

### Chemical trends

- All elements in Group 2 (also called **alkali earth metals**) have two electrons in their outermost principal quantum shell
- All Group 2 metals can form **ionic compounds** in which they donate these **two** outermost electrons (so they act as reducing agents) to become an ion with +2 charge (so they themselves become oxidised)
- Going down the group, the metals become more **reactive**
- This can be explained by looking at the Group 2 ionisation energies:



The graph shows that both the first and second ionization energies decrease going down the group

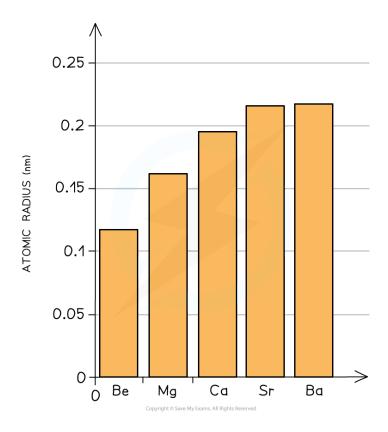







- The **second ionisation energy** is the energy needed to remove the second outer electron of an atom
- The graph above shows that going down the group, it becomes easier to remove the outer two electrons of the metals
- Though the **nuclear charge** increases going down the group (because there are more protons), factors such as an increased shielding effect and a larger distance between the outermost electrons and nucleus outweigh the attraction of the higher nuclear charge
- As a result of this, the elements become more reactive going down the group as it gets easier for the atoms to lose two electrons and become 2+ ions
- This trend is shown by looking at reactions of the Group 2 metals:
  - With dilute hydrochloric acid: **bubbles** of **hydrogen gas** are given off much faster indicating that the reactions become more vigorous
  - With oxygen: the metals get more reactive with oxygen down the group (Ba is so reactive, that it must be stored in oil to prevent it from reacting with oxygen in air)

### Physical trends

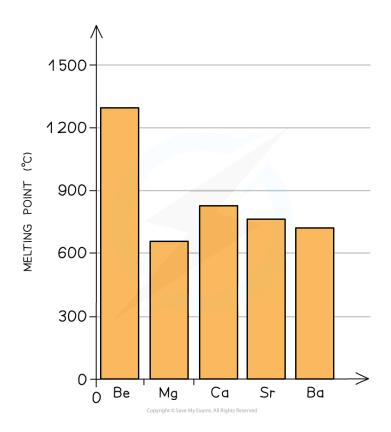

 Going down the group, the elements become larger as the outer two electrons occupy a new principal quantum shell which is further away from the nucleus





### The atomic radius of the Group 2 elements increases going down the group due to the addition of an extra principal quantum shell

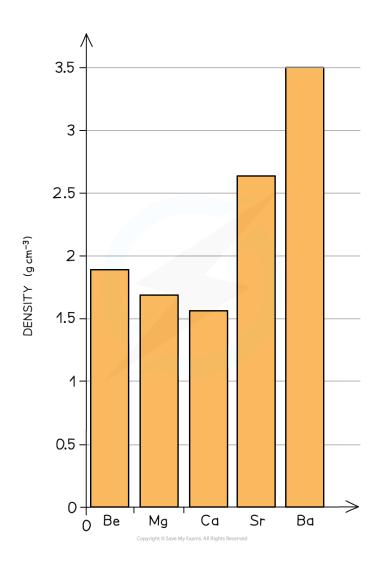





### The graph shows a increase in atomic radius going down the group

- The **melting point** of the elements decreases going down the group as the outer electrons get further away from the nucleus
- This means that the **attraction** between the **nucleus** and the **bonding electrons** decreases causing a decrease in melting point








### The graph shows a general decrease in melting point going down the group with a slight anomaly in magnesium

- As you go down the group, the **density** of the alkali earth metals drops and then increases
- Density is also affected by the packing structure of the metals, not just the atomic radius - no trend is perfect!





The graph show the broad trend in density going down the group

## Solubility of Group 2 Compounds: Hydroxides & Sulfates



## Solubility of Hydroxides & Sulfates

## **Group 2 hydroxides**

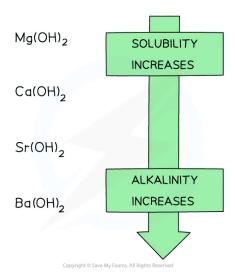
- Going down the group, the solutions formed from the reaction of group 2 oxides with water become more alkaline
- When the oxides are dissolved in water, the following ionic reaction takes place:

$$O^{2-}(aq) + H_2O(I) \rightarrow 2OH^{-}(aq)$$

- The higher the **concentration** of OH<sup>-</sup>ions formed, the more **alkaline** the solution
- The alkalinity of the solution formed can therefore be explained by the solubility of the Group 2 hydroxides

#### Solubility of the Group 2 Hydroxides

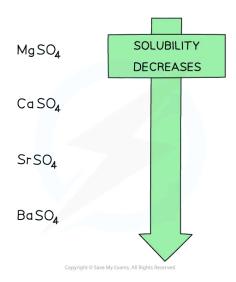
| Group 2 hydroxide   | Solubility at 298 K<br>(mol / 100 g of water) |
|---------------------|-----------------------------------------------|
| Mg(OH) <sub>2</sub> | 2.0×10 <sup>-5</sup>                          |
| Ca(OH) <sub>2</sub> | 1.5 x 10 <sup>-3</sup>                        |
| Sr(OH) <sub>2</sub> | 3.4 x 10 <sup>-3</sup>                        |
| Ba(OH) <sub>2</sub> | 1.5 x 10 <sup>-2</sup>                        |


• The hydroxides dissolve in water as follows:

$$X(OH)_2 (aq) \rightarrow X^{2+} (aq) + 2OH^{-} (aq)$$

- When the metal oxides react with water, a Group 2 hydroxide is formed
- Going down the group, the **solubility** of these hydroxides **increases** 
  - Mg(OH)<sub>2</sub> is **sparingly** soluble
  - Ba(OH)<sub>2</sub> is soluble
- This means that the **concentration** of OH<sup>-</sup>ions **increases**, increasing the pH of the solution
- As a result, going down the group, the **alkalinity** of the solution formed increases when Group 2 oxides react with water








Going down the group, the solubility of the hydroxides increases which means that the solutions formed from the reactions of the Group 2 metal oxides and water become more alkaline going down the group

## **Group 2 sulfates**

• The solubility of the Group 2 sulfates decreases going down the group



Going down the group, the solubility of the sulfates decreases



### **Examiner Tips and Tricks**

The insolubility of barium sulfate is used to test for sulfate ions.



Addition of HCl (aq) followed by BaCl<sub>2</sub> (aq) **OR** HNO<sub>3</sub> (aq) followed by BaNO<sub>3</sub> (aq) will form a white precipitate of barium sulfate if sulfate ions are present.

The acid removes other anions (e.g. carbonate) that could also form white precipitates, ensuring the test is specific to sulfate.





#### **Worked Example**

#### Predicting properties of radium

Radium (Ra) is a radioactive element found below barium at the bottom of group 2.

Applying your knowledge of the Group 2 elements, predict:

- 1. The formula of the ion formed by Ra.
- 2. The formulae of its oxide and hydroxide
- 3. Its first ionisation energy
- 4. Its reactivity compared with barium
- 5. The relative pH of its saturated hydroxide solution compared with a saturated solution of calcium hydroxide
- 6. The solubility of its sulfate compared to strontium sulfate
- 7. The equation for the reaction of its solid oxide with dilute hydrochloric acid
- 8. What would you expect to see if you mixed radium hydroxide solution with dilute sulfuric acid?

#### Answers:

- 1. The formula of the ion formed by Ra.
  - Since, Ra is in Group 2, it will form an ion with +2 charge to give Ra<sup>2+</sup>
- 2. The formulae of its oxide and hydroxide.
  - The group 2 oxides and hydroxides have general formula XO and X(OH)<sub>2</sub> respectively where X is the Group 2 element.
  - Therefore, radium oxide is RaO and radium hydroxide is Ra(OH)<sub>2</sub>
- 3. Its first ionisation energy.
  - Radium is below barium so its atomic radius is larger than the atomic radius of
  - This means that radium's outermost electrons are even further away and are therefore even more easily removed than barium's outermost electron pair.
  - The first ionization energy is between 450–480 kJ mol<sup>-1</sup>
- 4. Its reactivity compared with barium.
  - Radium's outermost electrons are even further away than in barium and are therefore more easily removed making radium more reactive than barium.
- 5. The relative pH of its saturated hydroxide solution compared with a saturated solution of calcium hydroxide.
  - The Group 2 hydroxides become more soluble going down the group.
  - Radium hydroxide will therefore be more soluble than calcium hydroxide. Since more hydroxide ions will be present in solution, the pH should be higher than the pH of calcium hydroxide



- 6. The solubility of its sulfate compared to strontium sulfate.
  - The Group 2 sulfates become less soluble going down the group.
  - Radium sulfate will therefore be less soluble than strontium sulfate.
- 7. The equation for the reaction of its solid oxide with dilute hydrochloric acid.
  - The general equation for the reaction of group 2 oxides with dilute hydrochloric acid is:
    - $XO(s) + 2HCl(aq) \rightarrow XCl_2(aq) + H_2O(l)$
  - The reaction of radium oxide with dilute hydrochloric acid is therefore:
    - RaO(s) + 2HCl(aq)  $\rightarrow$  RaCl<sub>2</sub>(aq) + H<sub>2</sub>O(l)
- 8. What would you expect to see if you mixed radium hydroxide solution with dilute sulfuric acid?
- Radium sulfate will be formed in this reaction, however the solubility of Group 2 sulfates decreases going down the group, therefore a white precipitate of radium sulfate will be formed in this reaction







## **Reactions of Group 2**

• The group 2 elements react with oxygen, water and dilute acids

#### **Group 2 Reactions - Observations**

|    | Reaction<br>with<br>oxygen               | Reaction with<br>water                                     | Reaction<br>with dilute<br>HCI | Reaction with dilute H <sub>2</sub> SO <sub>4</sub>                                                                       |
|----|------------------------------------------|------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Mg | Burns easily<br>Bright<br>white light    | Vigorous reaction<br>with steam, no<br>reaction with water | Reacts<br>vigorously           | Reacts vigorously                                                                                                         |
| Ca | Difficult to<br>ignite<br>Red flame      | Reacts moderately, forms a hydroxide                       | Reacts<br>vigorously           | Reaction slowed by the formation of a sparingly soluble sulfate layer on the metal, stopping hydrogen bubbles from rising |
| Sr | Difficult to<br>ignite<br>Red flame      | Reacts rapidly,<br>forms a hydroxide                       | Reacts<br>vigorously           | Reaction is quickly stopped by<br>the formation of an insoluble<br>sulfate layer on the metal                             |
| Ва | Difficult to<br>ignite<br>Green<br>flame | Reacts rapidly,<br>forms a hydroxide                       | Reacts<br>vigorously           | Reaction is quickly stopped by<br>the formation of an insoluble<br>sulfate layer on the metal                             |

## Reactions with water and oxygen

• The reaction of group 2 metals with oxygen follows the following general equation:

$$2M(s) + O_2(g) \rightarrow 2MO(s)$$

Where M is any metal in group 2

Remember than Sr and Ba  $\boldsymbol{also}$  form a peroxide,  $MO_2$ 

- The reaction of all metals with water follows the following general equation:
  - Except for, Be which does not react with water

$$M(s) + 2H_2O(I) \rightarrow M(OH)_2(s) + H_2(g)$$

Group 2 Metals reacting with Water and with Oxygen - Equations

|    | Reaction with oxygen                     | Reaction with water                                   |
|----|------------------------------------------|-------------------------------------------------------|
| Mg | $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$    | $Mg(s) + H_2O(g) \rightarrow MgO(s) + H_2(g)$         |
| Ca | 2 Ca (s) + O <sub>2</sub> (g) → 2CaO (s) | Ca (s) + $2H_2O(I) \rightarrow Ca(OH)_2(s) + H_2(g)$  |
| Sr | $2Sr(s) + O_2(g) \rightarrow 2SrO(s)$    | $Sr(s) + 2H_2O(I) \rightarrow Sr(OH)_2(aq) + H_2(g)$  |
|    | $Sr(s) + O_2(g) \rightarrow SrO_2(s)$    |                                                       |
| Ва | 2Ba (s) + O <sub>2</sub> (g) → 2BaO (s)  | Ba (s) + $2H_2O(I) \rightarrow Ba(OH)_2(aq) + H_2(g)$ |
|    | $Ba(s) + O_2(g) \to BaO_2(s)$            |                                                       |



■ Magnesium reacts **extremely slowly** with cold water:

$$Mg(s) + 2H_2O(I) \rightarrow Mg(OH)_2(aq) + H_2(g)$$

- The solution formed is **weakly alkaline** (pH 9–10) as **magnesium hydroxide** is only slightly soluble
- However, when magnesium is **heated in steam**, it reacts **vigorously** with steam to make magnesium oxide and hydrogen gas:

$$Mg(s) + H_2O(g) \rightarrow MgO(s) + H_2(g)$$

### Reactions of Group 2 metals with acid

- The Group 2 metals will react with dilute acids to form colourless solutions of metal salts
  - For example, they will form colourless solutions of metal chlorides if reacted with hydrochloric acid
- When metals react with an acid, the by-product of this reaction is hydrogen gas

Group 2 Reactions with Dilute Acids - Equations

|    | Reaction with dilute HCI                                                 | Reaction with dilute H <sub>2</sub> SO <sub>4</sub>   |
|----|--------------------------------------------------------------------------|-------------------------------------------------------|
| Mg | $Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) H_2(g)$                         | $Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$ |
| Ca | $Ca(s) + 2HCI(aq) \rightarrow CaCI_2(aq) H_2(g)$                         | $Ca(s) + H_2SO_4(aq) \rightarrow CaSO_4(aq) + H_2(g)$ |
| Sr | $Sr(s) + 2HCl(aq) \rightarrow SrCl_2(aq) H_2(g)$                         | $Sr(s) + H_2SO_4(aq) \rightarrow SrSO_4(s) + H_2(g)$  |
| Ва | Ba(s) + 2HCl(aq) $\rightarrow$ BaCl <sub>2</sub> (aq) H <sub>2</sub> (g) | Ba(s) + $H_2SO_4(aq) \rightarrow BaSO_4(s) + H_2(g)$  |

• When some of Group 2 metals react with sulfuric acid rather than hydrochloric, an insoluble sulfate forms



- Going down the group, the Group 2 sulfates become less and less soluble
  - Calcium sulfate is sparingly soluble, but strontium sulfate and barium sulfate are insoluble



• The reaction of the metals with dilute HCl follows the following general equation:

$$M(s) + 2HCl(aq) \rightarrow MCl_2(aq) + H_2(g)$$

■ The reaction of the metals with dilute H<sub>2</sub>SO<sub>4</sub> follows the following general equation:

$$M(s) + H_2SO_4(aq) \rightarrow MSO_4(aq) + H_2(g)$$

Remember that SrSO<sub>4</sub> and BaSO<sub>4</sub> are insoluble



### **Examiner Tips and Tricks**

Learn the general equation for the reaction with water and for magnesium with steam. You could be asked or reactions of the oxides and hydroxides with acids.

## Group 2: Oxides, Hydroxides & **Carbonates**

## Reactions of group 2 oxides with water

- All group 2 oxides are **basic**, except for BeO which is **amphoteric** (it can act both as an acid and base)
- Group 2 oxides react water to form alkaline solutions which get more alkaline going down the group

#### **Group 2 Oxides reacting with Water**

| Group 2<br>oxide | Reaction with water                                           | Observations                                                                                                                                   |
|------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| MgO              | $MgO(s) + H_2O(l)$ $\rightarrow Mg(OH)_2(s)$                  | MgO is only slightly soluble in water, therefore a weakly alkaline solution (pH 10.0) is formed                                                |
| CaO              | CaO(s) + $H_2O(l)$<br>$\rightarrow$ Ca(OH) <sub>2</sub> (s)   | A vigorous reaction which releases a lot of energy, causing some of the water to boil off as the solid lump seems to expand and open (pH 11.0) |
| SrO              | SrO(s)+ $H_2O(I)$<br>$\rightarrow$ Sr(OH) <sub>2</sub> (aq)   |                                                                                                                                                |
| ВаО              | BaO(s) + $H_2$ O(l)<br>$\rightarrow$ Ba(OH) <sub>2</sub> (aq) |                                                                                                                                                |



Remember that:

#### oxide + water → hydroxide



• You should know that calcium hydroxide, when in solution, is also called **limewater** 

### Reactions of Group 2 oxides with acid

- Group 2 sulfates also form when a group 2 oxide is reacted with sulfuric acid
- The insoluble sulfates form at the surface of the oxide, which means that the solid oxide beneath it can't react with the acid
- This can be prevented to an extent by using the oxide in **powder** form and **stirring**, in which case neutralisation can take place
- Remember that:

metal oxide + dilute hydrochloric acid → metal chloride + water

metal oxide + dilute sulfuric acid → metal sulfate + water

### Reactions of group 2 hydroxides

- The group 2 metal hydroxides form colourless solutions of metal salts when they react with a dilute acid
- The sulfates decrease in **solubility** going down the group (barium sulfate is an insoluble white precipitate)

**Group 2 Hydroxide Reactions with Dilute Acids** 

| Group 2<br>hydroxide                                                                                               | Reaction with dilute HCI                                                                           | Reaction with dilute H <sub>2</sub> SO <sub>4</sub>                                                                       |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Mg(OH) <sub>2</sub>                                                                                                | $Mg(OH)_2(s) + 2HCI(aq) \rightarrow MgCI_2$<br>$(aq) + 2H_2O(I)$                                   | $Mg(OH)_2(s) + H_2SO_4(aq) \rightarrow MgSO_4$ $(aq) + 2H_2O(l)$                                                          |
| Ca(OH) <sub>2</sub>                                                                                                | Ca(OH) <sub>2</sub> (s) + 2HCl (aq) $\rightarrow$ CaCl <sub>2</sub><br>(aq) + 2H <sub>2</sub> O(l) | Ca(OH) <sub>2</sub> (s) + H <sub>2</sub> SO <sub>4</sub> (aq) $\rightarrow$ CaSO <sub>4</sub> (aq) + 2H <sub>2</sub> O(I) |
| Sr(OH) <sub>2</sub> Sr(OH) <sub>2</sub> (s) + 2HCl(aq) $\rightarrow$ SrCl <sub>2</sub> (aq) + 2H <sub>2</sub> O(l) |                                                                                                    | $Sr(OH)_2(s) + H_2SO_4(aq) \rightarrow SrSO_4$<br>$(s) + 2H_2O(l)$                                                        |
| Ba(OH) <sub>2</sub>                                                                                                | Ba(OH) <sub>2</sub> (s) + 2HCl(aq) $\rightarrow$ BaCl <sub>2</sub><br>(aq) + 2H <sub>2</sub> O(l)  | Ba(OH) <sub>2</sub> (s) + H <sub>2</sub> SO <sub>4</sub> (aq) → BaSO <sub>4</sub><br>(s) + 2H <sub>2</sub> O(l)           |

■ Remember that:

hydroxide + dilute hydrochloric acid → chloride + water

hydroxide + dilute sulfuric acid → sulfate + water

### Reactions of group 2 carbonates



- All group 2 carbonates (except for **BeCO**<sub>3</sub>) are **insoluble in water**
- All group 2 carbonates will form **soluble chloride salts**, water and carbon dioxide gas when reacted with dilute hydrochloric acid



• The carbonates of Ca, Sr and Ba form as an **insoluble sulfate layer** on their solid carbonates which stops any further reaction after the initial bubbling (effervescence) of carbon dioxide gas is seen

**Group 2 Carbonates reacting with Dilute Acids** 

| Group 2<br>carbonate | Reaction with dilute HCI                                                | Reaction with dilute H <sub>2</sub> SO <sub>4</sub>                        |
|----------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|
| MgCO₃                | $MgCO_3(s) + 2HCI(aq) \rightarrow MgCI_2$ $(aq) + H_2O(I) + CO_2(g)$    | $MgCO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4$<br>$(aq) + H_2O(l) + CO_2(g)$ |
| CaCO <sub>3</sub>    | $CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2$<br>$(aq) + H_2O(l) + CO_2(g)$ | $CaCO_3(s) + H_2SO_4(aq) \rightarrow CaSO_4$<br>$(aq) + H_2O(l) + CO_2(g)$ |
| SrCO₃                | $SrCO_3(s) + 2HCI(aq) \rightarrow SrCI_2(aq)$<br>+ $H_2O(I) + CO_2(g)$  | $SrCO_3(s) + H_2SO_4(aq) \rightarrow SrSO_4(s)$<br>+ $H_2O(l) + CO_2(g)$   |
| BaCO <sub>3</sub>    | $BaCO_3(s) + 2HCI(aq) \rightarrow BaCI_2$ $(aq) + H_2O(l) + CO_2(g)$    | $BaCO_3(s) + H_2SO_4(aq) \rightarrow BaSO_4(s)$ $+ H_2O(l) + CO_2(g)$      |

■ Remember that:

carbonate + dilute hydrochloric acid  $\rightarrow$  chloride + water + carbon dioxide carbonate + dilute sulfuric acid → sulfate + water + carbon dioxide



### **Uses of Group 2 Elements**



## **Uses of Group 2 Uses of Calcium**

- Three different calcium compounds are used commonly in agriculture, construction and iron extraction:
  - **Limestone** this is impure calcium carbonate
  - Quicklime this is calcium oxide, formed by the thermal decomposition of calcium carbonate
  - Slaked lime this is calcium hydroxide formed when water is added to quicklime
    - $Ca(OH)_2(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + 2H_2O(l)$
- All three materials are used in **agriculture** to raise the pH of the soil
- Over time, the soil becomes more acidic while the optimum pH for many crops to grow is at around 6-6.5
- The compounds are all bases and react with the acids in the soil and raise the pH of the
- Calcium carbonate is more commonly used in agricultural lime as it is cheaper and safer to handle
  - However, due to calcium carbonate being largely insoluble, it acts more slowly than calcium hydroxide
- Calcium compounds are also used to remove sulfur dioxide from flue gases in a process known as sulfur scrubbing

## **Uses of Barium**

- Barium is used in medicine in the form of barium sulfate, BaSO<sub>4</sub>
- A barium meal or barium swallow containing BaSO<sub>4</sub> is given to a patient who needs an Xray on their intestines
- Barium absorbs X-rays which means the gut shows up white on the image
- Barium is toxic though can be used in this form because
  - Barium sulfate is insoluble so is not absorbed into the blood
  - The barium meal or swallow is only a small amount for the patient to ingest
- Barium chloride or barium nitrate solution can be used in the test for sulfate ions, SO<sub>4</sub><sup>2-</sup>

## **Uses of Magnesium**



 $\blacksquare$  Magnesium hydroxide, Mg(OH)<sub>2</sub>, is partially soluble in water and is used in suspension (known as 'milk of magnesia') to neutralise excess acid in the stomach and treat constipation



$$Mg(OH)_2(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + 2H_2O(I)$$

- It is safe to use as the magnesium hydroxide is only partially soluble making the solution only slightly alkaline (pH  $\approx$  10) due to the low OH<sup>-</sup> concentration
- Magnesium is also used in the extraction of titanium from its ore, TiO<sub>2</sub>
- TiO<sub>2</sub> is heated in a stream of chlorine, in the presence of coke, to produce TiCl<sub>4</sub>

$$TiO_2(s) + 2C(s) + 2Cl_2(g) \rightarrow TiCl_4(g) + 2CO(g)$$

• The titanium is extracted from its chloride by **reduction** with magnesium (sodium can also be used)

$$TiCl_4(g) + 2Mg(l) \rightarrow Ti(s) + 2MgCl_2(l)$$

