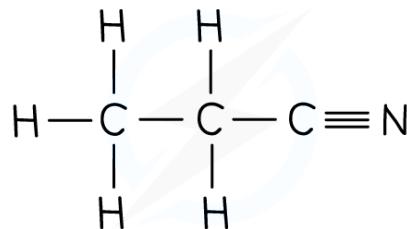


Cambridge (CIE) A Level Chemistry

Your notes

Nitriles & Hydroxynitriles

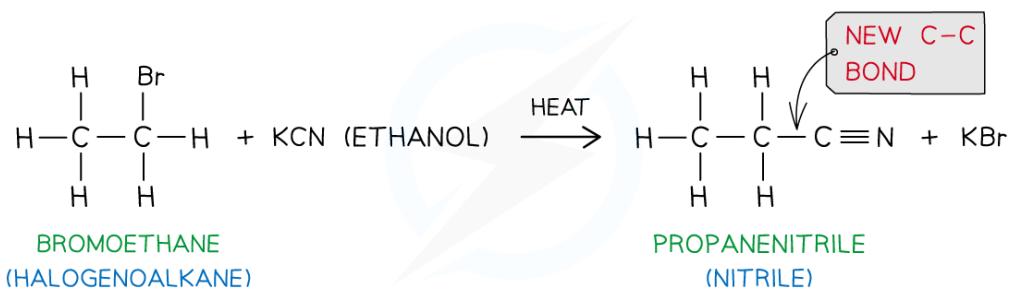
Contents


- * Nitriles & Hydroxynitriles

Production of Nitriles

- **Nitriles** are compounds with a $-CN$ functional group
- They can be prepared from the **nucleophilic substitution** of halogenoalkanes

Propanenitrile, an example of a nitrile



There are 2 **alkyl type carbon atoms** and the **nitrile carbon** for a total of 3 carbon atoms in propanenitrile

Reaction with KCN

- The **nucleophile** in this reaction is the **cyanide**, CN^- ion
- **Ethanolic solution of potassium cyanide** (KCN in ethanol) is **heated under reflux** with the halogenoalkane
- The product is a **nitrile**
 - If an **aqueous** solution of potassium cyanide (KCN (aq)) is heated under reflux with the halogenoalkane, an alcohol can be formed instead of the nitrile

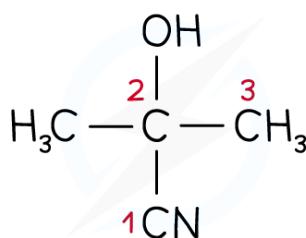
The reaction of bromoethane with ethanolic KCN

Bromoethane reacts with ethanolic potassium cyanide when heated under reflux to form propanenitrile

Examiner Tips and Tricks

The nucleophilic substitution of halogenoalkanes with KCN adds an **extra** carbon atom to the carbon chain

This reaction can therefore be used by chemists to make a compound with one more carbon atom than the best available organic starting material



Your notes

Production of Hydroxynitriles

- **Hydroxynitriles** are compounds with both a hydroxy (-OH) and cyanide (-CN) functional group
- They can be prepared from the **nucleophilic addition of aldehydes and ketones**

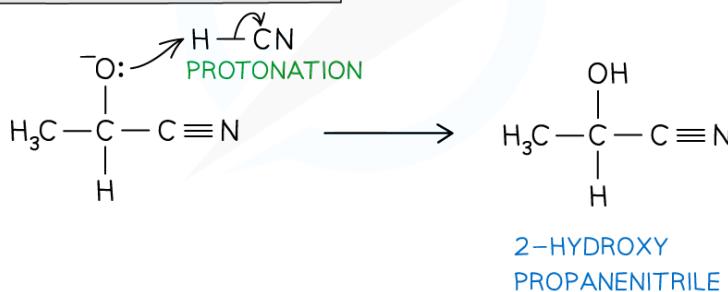
2-hydroxy-2-methylpropanenitrile, an example of a hydroxynitrile compound

Hydroxynitriles contain an OH and a CN group, typically attached to the same carbon atom

Reaction with HCN

- The nucleophilic addition of hydrogen cyanide to carbonyl compounds is a two-step process
- In **step 1**, the cyanide ion attacks the carbonyl carbon to form a negatively charged intermediate
- In **step 2**, the negatively charged oxygen atom in the reactive intermediate quickly reacts with aqueous H⁺ (either from HCN, water or dilute acid) to form a 2-hydroxynitrile

Nucleophilic addition of HCN to carbonyl compounds



Your notes

STEP 1: NUCLEOPHILIC ATTACK

STEP 2: PROTONATION

Copyright © Save My Exams. All Rights Reserved

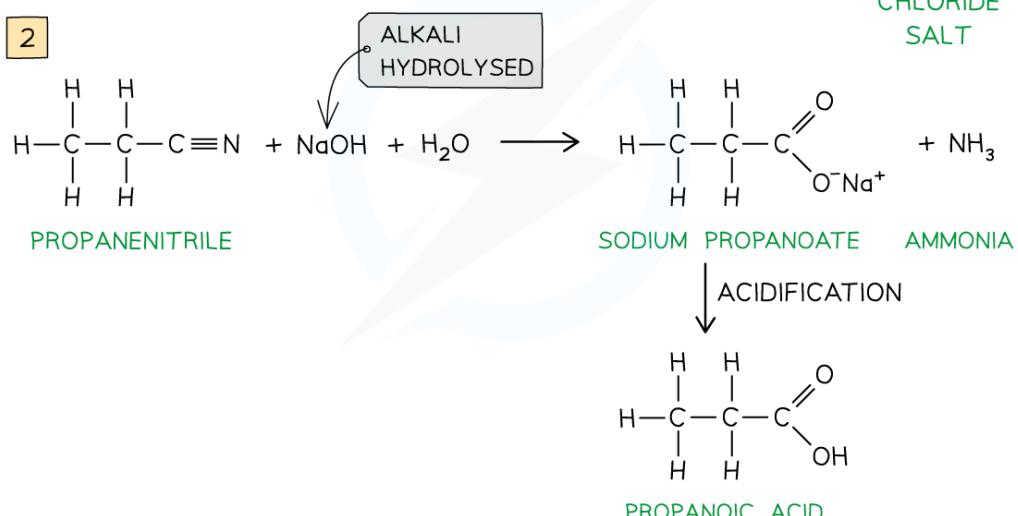
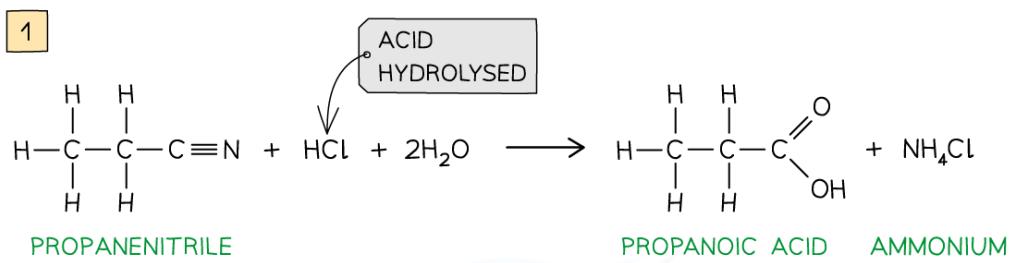
The cyanide ion attacks the carbonyl carbon to form a negatively charged intermediate which quickly reacts with a proton to form a 2-hydroxynitrile compound

Examiner Tips and Tricks

The actual negative charge on the cyanide ion is on the **carbon atom** and not on the **nitrogen atom**

Hydrolysis of Nitriles

- Nitriles are hydrolysed by either **dilute acid** or **dilute alkali** followed by **acidification** to give a carboxylic acid
 - Hydrolysis is the breakdown of a compound using water



Hydrolysis of nitriles

- Nitriles are **hydrolysed by either dilute acid or dilute alkali followed by acidification**
 - Hydrolysis by dilute acid results in the formation of a carboxylic acid and ammonium salt
 - Hydrolysis by dilute alkali results in the formation of a sodium carboxylate salt and ammonia; **Acidification** is required to change the carboxylate ion into a carboxylic acid
- The -CN group at the end of the hydrocarbon chain is converted to a -COOH group

Hydrolysis of nitriles

Your notes

Copyright © Save My Exams. All Rights Reserved

Hydrolysis of nitriles by either dilute acid (1) or dilute alkali and acidification (2) will form a carboxylic acid

Examiner Tips and Tricks

Unlike the **formation** of nitriles which add an extra carbon atom to the carbon chain, **hydrolysis** doesn't change the number of carbon atoms