AQA A Level Chemistry # Properties of Period 3 Elements & their Oxides ### **Contents** - * Na & Mg with water - * Reaction with Oxygen - Melting Point Trend - * Oxides Reacting with Water ### Na & Mg with water # Na & Mg with water ### Sodium & Magnesium - Both sodium, Na, and magnesium, Mg, are metals and are found in Group 1 and Group 2 of the periodic table respectively - Both have high melting points, but magnesium has a higher melting point than sodium - This is because of the 2+ charge of magnesium, meaning that it is has a higher charge density - Both are silvery metals - Sodium is quite a soft, silvery metal which tarnishes quickly in air - Magnesium is harder than sodium and you will often see it as magnesium ribbon #### Reactions with water - Despite their similarities, sodium and magnesium will react with water quite differently: - Sodium with cold water: $$2Na(s) + 2H2O(l) \rightarrow 2NaOH(aq) + H2(g)$$ - This is a very vigorous, exothermic reaction - The sodium floats on the surface of the water fizzing rapidly and melting as a result of the heat produced during the reaction - The colourless sodium hydroxide formed will have a pH of around 13–14, so a very alkaline solution is formed - The oxidation state of the sodium changes from 0 in its elemental state, to +1 in the sodium hydroxide - Magnesium with cold water: $$Mg(s) + 2H_2O(I) \rightarrow Mg(OH)_2(aq) + H_2(g)$$ - This is an extremely slow reaction only a very small number of bubbles will form on the magnesium ribbon - The magnesium hydroxide formed will have a pH of around 10 it is less alkaline than sodium hydroxide because magnesium hydroxide is only partially soluble - This is the key component in 'milk of magnesia' - \blacksquare The oxidation state of the magnesium changes from 0 in the elemental state, to +2 in the magnesium hydroxide - Heated magnesium with steam: ### $Mg(s) + H_2O(g) \rightarrow MgO(s) + H_2(g)$ - This reaction is much faster than with cold water - The magnesium burns with a bright, white flame - The products of this reaction are different magnesium oxide is produced instead of magnesium hydroxide - The oxidation state of the magnesium changes from 0 in its elemental state, to +2 in the magnesium oxide ### Reaction with Oxygen # Reaction with Oxygen ### **Oxide Formation** - The period 3 elements, excluding chlorine and argon, combine with oxygen to form - The oxide formed will contain the elements in their highest oxidation state - The following equations show these reactions: $$4Na(s) + O_{2}(g) \rightarrow 2Na_{2}O(s)$$ $$2Mg(s) + O_{2}(g) \rightarrow 2MgO(s)$$ $$4AI(s) + 3O_{2}(g) \rightarrow 2AI_{2}O_{3}(s)$$ $$Si(s) + O_{2}(g) \rightarrow SiO_{2}(s)$$ $$4P(s) + 5O_{2}(g) \rightarrow P_{4}O_{10}(s)$$ $$S(s) + O_{2}(g) \rightarrow SO_{2}(g)$$ #### Reaction of Period 3 elements with oxygen table | | Chemical Equation | Reaction
Conditions | Redction | Flame | Product | |----|--|------------------------------|------------|--------------------------|-----------------| | Na | $4Na(s) + O_2(g) \longrightarrow 2Na_2O(s)$ | Heated | Vigorously | Bright
yellow flame | White
solid | | Mg | $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$ | Heated | Vigorously | Bright
white flame | White
solid | | Αl | $4Al(s) + 3O_2(g) \longrightarrow 2Al_2O_3(s)$ | Powdered Al | Fast | Bright
white flame | White
powder | | Si | $Si(s) + O_2(g) \rightarrow SiO_2(s)$ | Powdered Si
Heat strongly | Slowly | Bright white sparkles | White
powder | | Р | $4P(s) + 5O_2(g) \longrightarrow P_4O_{10}(s)$ | Heated | Vigorously | Yellow or
white flame | White
clouds | | S | $S(s) + O_2(g) \longrightarrow SO_2(g)$ | Powdered S
is heated | Gently | Blue flame | Toxic
fumes | Copyright © Save My Exams. All Rights Reserved - Sulfur can actually form two oxides SO₂ and SO₃ - For SO₃ to form, a catalyst must be used and the reaction must take place at a very high temperature - The equation for this reaction is: #### $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$ - The oxides formed from these reactions have different physical properties, depending on the type of structure and bonding - Sodium oxide, magnesium oxide and aluminium oxide are all ionic oxides - Sodium, magnesium and aluminium are all metals and oxygen is a non-metal - Silicon oxide has a giant covalent structure, like diamond - Phosphorus oxide and sulfur dioxide are simple covalent molecules ## **Melting Point Trend** # **Melting Point Trend** - The melting points of the oxides vary significantly across Period 3 and show a clear trend - Melting point is a clear indication of the forces of attraction which exist between ions, atoms or molecules A graph to show the melting points of the Period 3 Oxides ### **Ionic Oxides** - The graph starts off showing the melting points of the ionic oxides - Sodium oxide - Magnesium oxide - Aluminium oxide - These are ionic oxides because the bonding exists between metals and non metals - They have giant lattice structures and thus, high melting points #### **Giant Covalent Oxides** - The graph then shows a giant covalent oxide - Silicon dioxide - This is covalent because both silicon and oxygen are non metals - The millions of covalent bonds within this giant structure are extremely strong, and thus it has a high melting point • Giant covalent structures can also be called macromolecules or giant molecules ### Simple Covalent Oxides - The graph then shows a significant drop in melting point, as we reach the simple covalent oxide molecules - Phosphorus(V) oxide - Sulfur dioxide - Sulfur trioxide - These are small molecules with only weak intermolecular forces of attraction between them - Sulfur dioxide and sulfur trioxide are both gases at room temperature, because both their melting point and boiling point are so low - Sulfur trioxide, SO₃, has a slightly higher melting point than sulfur dioxide, SO₂, because of the increase in intermolecular forces between the slightly larger SO_3 molecules Summary Table of the Physical Properties of the Period 3 Oxides | Element | Na | Мд | Al | Si | Р | S | S | |--|---|---|--------------------------------|------------------------------|--|--|---| | Formula of oxide | Na₂O | MgO | Al ₂ O ₃ | SiO ₂ | P ₄ O ₁₀ | SO ₂ | SO ₃ | | State at
25°C | solid | solid | solid | solid | solid | gas | liquid | | Melting point / K | 1548
(sublimes) | 3 125 | 2 345 | 1883 | 853
> 1 atm | 200 | 290 | | Electrical conductivity when molten | good | good | good | none | none | none | none | | Structure | giant ionic | giant ionic | giant ionic | giant
molecule | simple
molecule | simple
molecule | simple
molecule | | Adding
water | reacts and
forms
hydroxide
ions in
solution | slightly
soluble,
dissolved
oxide forms
a few
hydroxide
ions in
solution | insoluble
but
amphoteric | insoluble
but acidic | acidic;
reacts
and gives
H [*] ions in
solution | acidic;
reacts and
forms weak
acid H ₂ SO ₃
with a few
H ⁺ ions in
solution | acidic;
reacts and
forms strong
acid H ₂ SQ,
with H ⁺ ions
in solution | | Typical pH
of aqueous
solution of
oxide | 13 | 8 | 7, i.e. does
not dissolve | 7, i.e. does
not dissolve | 2 | 3 | 1 | | Covalent
character | INCREASES | | | | | | → | | lonic
character | DECREASES | | | | | | | ### **Examiner Tips and Tricks** ${\it Make sure that you can state and explain the link between the physical properties of }$ the Period 3 Oxides and their structure and bonding! # Oxides Reacting with Water Structure, bonding & electronegativity of the Period 3 elements table | Period 3 element | Na | Mg | Al | Si | Р | S | |------------------------|-------------------|----------------|---|-------------------|--------------------------------|------------------------------------| | Period 3 oxide | Na ₂ O | MgO | Al ₂ O ₃ | SiO ₂ | P ₄ O ₁₀ | SO ₂
SO ₃ | | Relative melting point | High | High | Very high | Very high | Low | Low | | Chemical bonding | Ionic | Ionic | lonic (with a
degree of
covalent) | Covalent | Covalent | Covalent | | Structure | Giant
ionic | Giant
ionic | Giant ionic | Giant
covalent | Simple
molecular | Simple
molecular | | Element | Na | Mg | Al | Si | Р | S | | Electronegativity | 0.9 | 1.2 | 1.5 | 1.8 | 2.1 | 2.5 | • The oxides of Na and Mg which show purely ionic bonding produce alkaline solutions with water as their **oxide** ions (O²⁻) become **hydroxide** ions (OH⁻): $$O^{2-}(aq) + H_2O(I) \rightarrow 2OH^{-}(aq)$$ - The oxides of **P and S** which show purely **covalent bonding** produce **acidic** solutions with water because when these oxides react with water, they form an acid which donates H⁺ ions to water - Eg. SO₃ reacts with water as follows: $$SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq)$$ ■ The H₂SO₄ is an acid which will donate a H⁺ to water: $$H_2SO_4(aq) + H_2O(I) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$ - All and Si are insoluble and when they react with hot, concentrated alkaline solution they act as a base and form a salt - This behaviour is very typical of a **covalently bonded oxide** - Al can also react with acidic solutions to form a salt and water - This behaviour is very typical of an ionic bonded metal oxide This behaviour of AI proves that the chemical bonding in aluminium oxide is not purely ionic nor covalent: therefore it exhibits amphoteric character Reaction of Period 3 oxides with water table | Oxide | Chemical equation | рН | Comments | |------------------------------------|--|------------------------------|--| | Na ₂ O | $Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$ | 14
(strongly
alkaline) | - | | MgO | $MgO(s) + H_2O(I) \rightarrow Mg(OH)_2(aq)$ | 10
(weakly alkaline) | - | | Al ₂ O ₃ | No reaction | - | Al ₂ O ₃ is insoluble in water | | SiO ₂ | No reaction | - | SiO ₂ is insoluble in water | | P ₄ O ₁₀ | $P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4$ (aq) | 2
(strongly acidic) | Vigorous / violent
reaction | | SO ₂
SO ₃ | $SO_2(g) + H_2O(I) \rightarrow H_2SO_3(aq)$
$SO_3(g) + H_2O(I) \rightarrow H_2SO_4(aq)$ | 1
(strongly acidic) | - | #### Behaviour of the Period 3 Oxides with Water - Metal oxides (to the left of the periodic table): - Sodium oxide, Na₂O, and magnesium oxide, MgO, are made up of ions - They contain an oxide ion, O²⁻, which is a strong base and will readily produce hydroxide ions through reaction with water - This is why the solutions formed are strongly alkaline - Sodium oxide forms a more alkaline solution than magnesium oxide because it is far more soluble in water - Oxides in the middle of the periodic table - Although ionic, aluminium oxide does not react with water because the oxide ions are held too strongly in the ionic lattice - This means the ions cannot be separated - Silicon dioxide is a giant covalent molecule it is the main component of sand - It has millions of strong covalent bonds, so it does not react with water - Non-metal oxides (to the right of the periodic table): - Oxides of phosphorus and sulfur are simple covalent molecules • They will react with water to produce acidic solutions # Your notes ### **Examiner Tips and Tricks** Key thing to remember: The metal oxides form alkaline solutions in water, the oxides in the middle do not react and the non-metal oxides form acidic solutions. ## **Acid-Base Reactions of the Oxides** ### Acid/base Nature of the Period 3 Oxides • Aluminium oxide is amphoteric which means that it can act both as a base (and react with an acid such as HCl) and an acid (and react with a base such as NaOH) | Period 3 oxide | Na ₂ O | MgO | Al ₂ O ₃ | SiO ₂ | P ₄ O ₁₀ | SO ₂
SO ₃ | |--------------------|-------------------|-------|--------------------------------|------------------|--------------------------------|------------------------------------| | Acid / base nature | Basic | Basic | Amphoteric | Acidic | Acidic | Acidic | #### Reactions of the Period 3 oxides with acid/base table | Period 3
oxide | Chemical equation | Comments | |--------------------------------|---|---| | Na ₂ O | Na ₂ O (s) + 2HCl (aq) \rightarrow 2NaCl (aq) + H ₂ O (l) | - | | MgO | $MgO(s) + 2HCI(aq) \rightarrow MgCI_2$ $(aq) + H_2O(I)$ | Used in indigestion remedies by neutralising the excess acid in the stomach | | Al ₂ O ₃ | $Al_2O_3(s) + 3H_2SO_4(aq) \rightarrow$
$Al_2(SO_4)_3(aq) + 3H_2O(l)$ | Reacts with acid to form a salt and water | | | $Al_2O_3(s) + 2NaOH(aq) + 3H_2O$
(I) $\rightarrow 2NaAl(OH)_4(aq)$ | Reacts with hot, concentrated alkali to form a salt | | SiO ₂ | $SiO_2(s) + 2NaOH(aq) \rightarrow$
$Na_2SiO_3(aq) + H_2O(l)$ | Reacts with hot, concentrated alkali to form a salt and water | | P ₄ O ₁₀ | P_4O_{10} (s) + 12NaOH \rightarrow 4Na ₃ PO ₄ + 6H ₂ O (I) | - | | SO ₂
SO ₃ | $SO_2(g) + 2NaOH(aq) \rightarrow Na_2SO_3(aq) + H_2O(l)$ | - | |------------------------------------|--|---| | · | $SO_3(g) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + H_2O(I)$ | | ### **Examiner Tips and Tricks** It is crucial that you learn these reactions - make sure that you know the state $symbols, the \ products \ formed \ and \ the \ full \ balanced \ equations!$