Oxford Cambridge and RSA

GCE

Chemistry A

Unit F324: Rings, Polymers and Analysis
Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
1	(a)	(i)		2	AO1 AO1	Diagrams must show the full ring Labels not required Diagram shows correct position of localised π bonds/ π-electrons OR correct position of p-orbital overlap Diagram shows correct position of delocalised π bonds/ π-electrons OR correct position of p-orbital overlap IGNORE C=C in diagram IGNORE initial diagrams showing p-orbitals
		(ii)	Maximum of 3 marks Bond lengths: up to 2 marks All carbon-carbon bonds the same length Bond length intermediate/between (short) $\mathrm{C}=\mathrm{C}$ and (long) $\mathrm{C}-\mathrm{C}$ Enthalpy change of hydrogenation: up to 2 marks ΔH hydrogenation different from that expected ΔH less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene)	3	AO1 AO1 AO1	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE any reference to reactivity DO NOT ALLOW ΔH halogenation/hydration
	(b)	(i)	$6 \checkmark$	1	AO2	

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	$\mathrm{AlCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{4}^{-}+\mathrm{Cl}^{+}$	5	AO1	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC NOTE: If Br^{+}is used, DO NOT ALLOW 1st mechanism mark but other marks available by ECF NOTE Absence of $\mathrm{C}_{2} \mathrm{H}_{5}$ OR wrong position of $\mathrm{C}_{2} \mathrm{H}_{5}$ loses intermediate mark
		Curly arrow from π bond to Cl^{+} Correct intermediate Curly arrow from C-H bond back to reform ring $\mathrm{H}^{+}+\mathrm{AlCl}_{4}^{-} \rightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}$		AO1 AO2 AO2 AO1	DO NOT ALLOW the following intermediate: - π-ring must be more than halfway way down AND - Arc must be the right way up (i.e. gap towards $\mathrm{C}-\mathrm{Cl}$) ALLOW + sign anywhere within hexagon of intermediate
					ALLOW mechanism with $\mathrm{Cl}-\mathrm{Cl}---\mathrm{AlCl}_{3}$ for 1st two marks, i.e.

Question		Answer	Marks	AO element	Guidance
		NOTE: ALLOW mechanism using Kekulé structures, i.e.			Refer alternative mechanisms to TL for discussion.
	(iii)		1	AO3	IGNORE temperature IGNORE catalyst 'concentrated' not required for HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ but DO NOT ALLOW dilute HNO_{3} or dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$
	(iv)	```IF answer = 61.2\% award 3 marks moles of ethylbenzene used \(=2.65 / 106=0.025(0)(\mathrm{mol})\) moles of \(\mathbf{B}\) formed \(=2.31 / 151=0.0153(\mathrm{~mol})\) yield \(=0.0153 / 0.0250 \times 100=61.2 \%\)```	3	AO2 AO2 AO2	0.0250 mol is exact calculator value 0.0153 mol must be to at least 3sf (calculator value 0.015298013) The final answer must be to 3 SF (calculator value gives 61.1920529\%) (rounding of moles of \mathbf{B} gives 61.2% exactly) ALLOW ECF from incorrect M_{r} or moles unless the yield is > 100%
		Total	14		

Question			Answer	Marks	AO element	Guidance
2	(a)		nitrogen electron pair OR nitrogen lone pair accepts a proton $/ \mathrm{H}^{+}$	1	AO1	DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton $/ \mathrm{H}^{+}$required) ALLOW nitrogen donates an electron pair/lone pair to H^{+} IGNORE NH_{2} group donates electron pair
	(b)	(i)	Sn AND concentrated HCl \checkmark	1	AO3	IGNORE temperature and reaction type/purpose of reagents
		(ii)		1	AO2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW H_{2} instead of [H]
	(c)	(i)	monomers join/bond/add/react/form polymer/form chain AND form another product/small molecule/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{HC} /$	1	AO1	IGNORE 'two' when referring to monomers, i.e. (two) monomers...
		(ii)		2	$\begin{aligned} & \mathrm{AO} 2 \\ & \mathrm{AO} 2 \end{aligned}$	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW 'terminal' -NH— at other end 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and/or n ALLOW CONH for amide link

Question		Answer		Marks	AO element	Guidance
(d)	(i)	$\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO} \checkmark$		1	AO2	ALLOW any order of elements
	(ii)	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2} \checkmark$ $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}$		2	$\mathrm{AO} 2$ AO2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW acyl chloride, $\mathrm{ClOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COCl}$
			Total	9		

	Question	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
3	(a)	M1	3		
		(${ }^{\mathrm{C}}$ NMR spectrum indicates) four types of carbon		AO1	ALLOW 4 carbon
		M2 (Tollens' test shows) compound \mathbf{D} is an aldehyde			
		\checkmark		AO2	
		M3 Correct structure $\mathrm{H}_{3} \mathrm{C}$			ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
					NOTE: Correct structure also scores M2 (aldehyde shown in structure)
		$\mathrm{H}_{3} \mathrm{C}^{\prime}$ H		AO2	ALLOW 3-methylbutanal (2 marks) NOTE: Ketone with four carbon environments i.e. methylbutanone (Maximum 2 marks possible: M1 and M3)

Ques	Answer	Marks	$\begin{gathered} \mathrm{AO} \\ \text { element } \end{gathered}$	Guidance
4 (a)	M1 Mirror images around a tetrahedral carbon atom M2 The four correct groups with correct connectivity	2	AO1 AO2	3-D diagrams must contain 1 'out wedge' and 1 'in wedge'/dotted line AND 2 lines in plane of paper ALLOW 2 'out wedges', 1 'in wedge' and 1 line in plane of paper. ALLOW the same 3-D structure repeated with two groups 'swapped'. After rotation the second isomer is a mirror image of the first. Connectivity: the chiral carbon must be linked to the C of the COOH AND the C of the $\mathrm{CH}_{2} \mathrm{OH}$ AND the N of NH_{2}.
(b)	M1 Compound \mathbf{F} M2 Compound G	6	AO2	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous IGNORE labels for M1, M2, M3 and M4 ALLOW ECF for the following conversions: $\mathbf{F} \rightarrow \mathbf{G}$ (\mathbf{F} must have correct molecular formula) $\mathbf{H} \rightarrow \mathbf{I}$ (I must have correct empirical formula)

Quest	Answer	Marks	$\begin{array}{\|c\|} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
(c)	 1 mark for correct structure with COOH or $\mathrm{COO}^{-} \mathrm{Na}^{+}$ 1 mark for correct structure with COOH or $\mathrm{COO}^{-} \mathrm{Na}^{+}$ 1 mark for both structures shown with COO^{-}	3	AO2 AO2 AO2	For both structures, ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) Note: If there are more than two structures shown, credit any correct structures and IGNORE incorrect structures DO NOT ALLOW -COO-Na (covalent bond) (penalise once only) ALLOW - COO^{-} ALLOW -COONa OR ALLOW delocalised carboxylate
	Total	12		

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

