Write your name here	1	
Surname	Oth	er names
Edexcel GCE	Centre Number	Candidate Number
Physics Advanced Unit 6B: Experimental Alternational Alternational		rnal Assessment
Tuesday 17 January 2012 Time: 1 hour 20 minutes		Paper Reference 6PH08/01
You must have: Ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 40.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions.

1 The spring shown below is made up of loops of wire. There are two extra loops on each end.

A student wants to determine the total length of wire used to make the spring.

She only has digital callipers.

She decides to find the length of wire, *l*, in each loop and multiply this by the total number of loops.

The length of wire, l, is given by $l = \pi d$ where d is the diameter of each loop.

(a) She obtains the following values for d.

d/mm	15.52	15.56	15.48	15.55	15.47
------	-------	-------	-------	-------	-------

(i) Use these values to calculate a mean value for d.

(1)

(ii) Hence calculate a value for *l*.

(1)

(iii) Estimate the percentage uncertainty in your value for l.

(i)	Calculate the total length of wire in the spring.	
	Carculate the total rength of which the spring.	(1)
(ii)	The student forgets the 2 extra loops at both ends.	
	Estimate the percentage uncertainty in her value for the total length of wire caused by this error.	
		(1)
She	now wants to measure the diameter of the wire that makes the spring.	
Des	scribe how you would do this as accurately as possible.	(2)
Des	scribe how you would do this as accurately as possible.	(2)
Des	scribe how you would do this as accurately as possible.	(2)
Des	scribe how you would do this as accurately as possible.	(2)
Des		
Des	(Total for Question 1 = 7 mar	
Des		

2	A student measures the acceleration of a drinks can as it rolls down a ramp.	He wants to
	use this acceleration to find a value for <i>g</i> .	

(a) The ramp makes an angle θ with the bench as shown.

(2)

(ii)	Explain	why	your	method	gives	good	precision
------	---------	-----	------	--------	-------	------	-----------

(2)

(b) To find the acceleration he measures the time *t* it takes for the can to roll a distance *s* down the ramp.

(i) He uses a metre rule to mark a distance s = 1.000 m on the ramp. Estimate the percentage uncertainty in this measurement.

(1)

(ii) He uses a stopwatch to measure t.

State **one** technique he can use to reduce the uncertainty in this measurement.

(c) The student determines the mean value for t as 1.20 s with an uncertainty of 0.10 s.	
He assumes the acceleration a is given by $a = 2s/t^2$.	
(i) Use his value to calculate the acceleration of the can.	(1)
(ii) Estimate the overall percentage uncertainty in his value for the acceleration.	(2)
(d) The student assumes that the acceleration of the can is given by $a=g\sin\theta$. (i) Use this equation to calculate a value for g when $\theta=10.0^{\circ}$.	(1)
(ii) Calculate the percentage difference between this value for g and the accepted value for g.	(1)
(iii) Explain whether your answers in (c)(ii) and (d)(ii) support the assumption that $a = g \sin \theta$.	(1)
(Total for Question 2 = 12 ma	rks)

3 A student wants to determine the specific heat capacity of aluminium. She heats a block of aluminium by supplying electrical energy to a heater that is inserted into the block as shown.

(a) Draw the electrical circuit she should use.

(b) She write	es the following plan	
	Measure the temperature of the block at the start	
	Turn on the electric current	
	Determine the energy flowing for a certain time	
	Turn off the current and measure the temperature	
	This will give me the specific heat capacity if I divide the total energy by the mass and the temperature rise	
	improved plan that includes details of the method to be used and any ons needed to produce an accurate value for the specific heat capacity of im.	(6)

(Total for Question 3 = 7 marks)

4 A metre rule is clamped to the bench and a mass is attached to the end as shown. The arrangement is called a cantilever.

When pulled down a short distance and released, the cantilever will oscillate. The period of oscillation T will depend on the distance d of the mass from the clamped end, providing the mass on the end is kept constant.

(a) (1)	Add to the diagram to show how you would measure the distance d.	

(ii) Describe how you would use a stopclock to determine an accurate value for T. (2)

(b) The stopclock has	a precision of 0.01 s.

(i) State what is meant by this.

(1)

(ii) State why this is a suitable instrument for this measurement. (1)

	u would use your graph to obtain a val	ue for q. (1)
The following dat	a were obtained in such an experiment	
d/cm	Mean T/s	
87.7	7.23	
82.7	6.49	
77.7	5.85	
72.7	5.26	
67.7	4.66	
62.7	4.16	
$T = p d^{q}$.	on the grid opposite to show that these	
Use the colur	nns provided to show your processed of	data. (4)
i) Use your grap	oh to find a value for q.	(2)

(Total for Question 4 = 14 marks)

TOTAL FOR PAPER = 40 MARKS

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Coulomb's law constant $k = 1/4\pi\varepsilon_0$

 $= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

Electron charge $e = -1.60 \times 10^{-19} \text{ C}$

Electron mass $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12} \; F \; m^{-1}$

Planck constant $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

Proton mass $m_{\rm p} = 1.67 \times 10^{-27} \text{ kg}$

Speed of light in a vacuum $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$

Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$

Unified atomic mass unit $u = 1.66 \times 10^{-27} \text{ kg}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/mW = mg

Work and energy $\Delta W = F \Delta s$

 $E_{\rm k} = \frac{1}{2} m v^2$

 $\Delta E_{\rm grav} = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

Hooke's law $F = k\Delta x$

Density $\rho = m/V$

Pressure p = F/A

Young modulus $E = \sigma/\varepsilon$ where

Stress $\sigma = F/A$

Strain $\varepsilon = \Delta x/x$

Elastic strain energy $E_{\rm el} = \frac{1}{2}F\Delta x$

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $_1\mu_2 = \sin i/\sin r = v_1/v_2$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VIefficiency $P = I^2 I$

 $P = I^{2}R$ $P = V^{2}/R$ W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

Unit 4

Mechanics

Momentum p = mv

Kinetic energy of a

non-relativistic particle $E_k = p^2/2m$

Motion in a circle $v = \omega r$

 $T = 2\pi/\omega$

 $F = ma = mv^2/r$

 $a = v^2/r$

 $a = r\omega^2$

Fields

Coulomb's law $F = kQ_1Q_2/r^2$ where $k = 1/4\pi\epsilon_0$

Electric field E = F/Q

 $E=kQ/r^2$

E = V/d

Capacitance C = Q/V

Energy stored in capacitor $W = \frac{1}{2}QV$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

In a magnetic field $F = BII \sin \theta$

 $F = Bqv \sin \theta$

r = p/BQ

Faraday's and Lenz's Laws $\varepsilon = -d(N\phi)/dt$

Particle physics

Mass-energy $\Delta E = c^2 \Delta m$

de Broglie wavelength $\lambda = h/p$

Unit 5

Energy and matter

Heating $\Delta E = mc\Delta\theta$

Molecular kinetic theory $\frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT$

Ideal gas equation pV = NkT

Nuclear Physics

Radioactive decay $dN/dt = -\lambda N$

 $\lambda = \ln 2/t_{\frac{1}{2}}$

 $N = N_0 e^{-\lambda t}$

Mechanics

Simple harmonic motion $a = -\omega^2 x$

 $a = -A\omega^2 \cos \omega t$ $v = -A\omega \sin \omega t$ $x = A \cos \omega t$ $T = 1/f = 2\pi/\omega$

Gravitational force $F = Gm_1m_2/r^2$

Observing the universe

Radiant energy flux $F = L/4\pi d^2$

Stefan-Boltzmann law $L = \sigma T^4 A$

 $L = 4\pi r^2 \sigma T^4$

Wien's Law $\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m K}$

Redshift of electromagnetic

radiation $z = \Delta \lambda / \lambda \approx \Delta f / f \approx v / c$

Cosmological expansion $v = H_0 d$

