Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International Advanced Level
in Biology (WBIO2) Paper 01
Development, Plants and the Environment

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017

Publications Code WBIO2_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
$\mathbf{1 (a)}$	1. The only correct answer is C as the nucleus, nucleolus and mitochondrion are found in animal cells \boldsymbol{A} is not correct because the nucleus, nucleolus and mitochondrion are found in animal cells \boldsymbol{B} is not correct because the nucleus, nucleolus and mitochondrion are found in animal cells D is not correct because chloroplasts are not found in animal cells	(1)

Question Number	Answer				Mark
1(b)	Feature Plant cells Prokaryotic cells Plant cells and prokaryotic cells cellulose cell wall $\boxed{ }$ nucleus \boxtimes ribosomes \boxtimes Only plant cells have cellulose cell walls. Prokaryotic cell walls are made of peptidoglycan. Plant cells are eukaryotic cells so have a nucleus. Prokaryotic cells do not have a nucleus. Ribosomes are found in both eukaryotic cells and prokaryotic cells, although their sizes are different.				
					(3)

Question Number	Answer	Additional guidance	Mark
1(c)	1. pores in the cell wall between (adjacent) cells / eq ; 2. idea that there is cytoplasm running through the plasmodesmata;	PIECE TOGETHER e.g. "Areas where there is no cell wall and cytoplasm links two adjacent cells," gains mp1 and 2. 1. ACCEPT gaps /channels / canals / holes as eq to pores 1. ACCEPT references to bridges only if in the context of cell wall 1. ACCEPT descriptions of no cell wall present 1. NOT pits 2.IGNORE ref to symplast 2.ACCEPT cytoplasm-filled channel / cytoplasmic bridge ACCEPT labelled diagram with the above points for 2 marks	(2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 (a)}$	Acrosome(s) / acrosome cap/acrosomal cap;	ACCEPT phonetic spellings NOT acrosome reaction	(1)

Question Number	Answer	Mark
$\mathbf{2 (b)}$	1. The only correct answer is \mathbf{C} because mitochondria are only found in the mid piece. \boldsymbol{A} is not correct because the mitochondria are only found in the mid piece and therefore not in the acrosome as well B is not correct because the mitochondria are only found in the mid piece and therefore not in the nucleus as well \boldsymbol{D} is not correct because the mitochondria are only found in the mid piece and therefore not in the flagellum as well	(1)
Question Number	Answer 2(c)	A is not correct because the acrosome does not contain DNA \boldsymbol{B} is not correct because the acrosome does not contain DNA \boldsymbol{C} is not correct because both the nucleus and mitochondria contain DNA

Question Number	Answer	Additional guidance	Mark
2(d)	1. allow movement (of the sperm);	1. ACCEPT allows sperm to swim	
	2. to transfer (the male) \{ genetic material / DNA \};	3. ACCEPT secondary oocyte /egg / egg cell as eq to ovum 3. (from the cervix) to the ovum / eq ;	(2)

Question Number	Answer	Additional guidance	Mark
*2(e)	(QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence) 1. to produce haploid \{ cells /nuclei/gametes \} ; 2. reference to crossing over ; 3. credit detail of crossing over ; 4. idea of (resulting in) exchange of alleles between chromatids; 5. (crossing over leads to) formation of recombinants ; 6. reference to \{ random / independent \} assortment ; 7. credit detail of independent assortment ; 8. idea of new combinations of alleles in the gametes ;	Emphasis is on spelling of technical terms 1. ACCEPT halving the chromosome number in gametes IGNORE ref to 23 chromosomes unless with ref to humans 3. e.g. formation of chiasma / chiasmata OR exchanging sections of chromatids OR description of breaking and rejoining 4. NOT genes or chromosomes 5. ACCEPT new combinations of alleles (on chromatids) 7. e.g. \{ homologous chromosomes / maternal and paternal chromosomes \} line up in different combinations	(5)

Question Number	Answer	Additional guidance	Mark
3(a)	Any two from: 1. reference to \{ sustainable / sustainability \} ; 2. made from renewable materials / not made from nonrenewable materials / eq ; 3. biodegradable / eq ;	ACCEPT converse statements 1.ACCEPT they will not run out 2. IGNORE plant-based plastics are renewable [i.e. answer has to have idea it is the plants rather than the plastics that are renewable] 2. ACCEPT idea that more plants can be grown 2. ACCEPT ref to plant-based plastics being carbon-neutral 3. ACCEPT can be decomposed	(2)

Question Number	Answer	Additional guidance	Mark
3(b)		ACCEPT converse statements throughout	
	1. idea that sugar-based plastics cause more eutrophication ; 2. idea that corn-based plastics cause \{ less eutrophication than A / more than B \} ;		
	3. idea that (both) plant-based plastics cause more damage to the ozone layer ;	3. ACCEPT sugar and corn	
	4. credit a named problem caused by \{ drilling for / transporting / refining \} oil e.g. oil slicks ;		
	5. credit a named problem of growing plants for plastic e.g. habitat destruction, decreased food production ;	5. IGNORE ref to fertilisers	
	6. correct manipulation of figures to compare oil-based and plant-based plastics ;	E.g. corn based plastic is 0.4 less than plastic A for eutrophication	(4)

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { 3(c) } & & \begin{array}{l}\text { N.B. ACCEPT any other named ion } \\ \text { with correct use } \\ \text { e.g. phosphate ions for \{ nucleic acids } \\ \text { / DNA / RNA / ATP / eq \} }\end{array} \\ & \begin{array}{l}\text { 1. nitrate (ions) are needed for \{ nucleic acids / DNA / RNA / } \\ \text { amino acids / proteins / ATP / eq \} ; } \\ \text { 2. calcium (ions) are needed for \{ cell wall / cell wall matrix / } \\ \text { calcium pectate /middle lamella/ eq \}; } \\ \text { 3. magnesium (ions) needed for chlorophyll ; }\end{array} & \text { ACCEPT chemical symbols }\end{array}\right]$
$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { 3(d) } & \begin{array}{ll}\text { 1. ultraviolet light is an environmental \{ factor / effect \} / eq ; } \\ \text { 2. idea that ultraviolet light \{ causes mutations / is a mutagen \} ; } \\ \text { 3. idea that DNA \{ replication / repair / eq \} is affected ; } \\ \text { 4. reference to \{ formation of an oncogene / tumour suppressor } \\ \text { genes being affected \} ; }\end{array} & \begin{array}{l}\text { 4. ACCEPT named examples of } \\ \text { alleles predisposing to skin } \\ \text { cancer e.g. CDKN2A and CDK4 }\end{array} & \text { 2. NOT mutation in melanin }\end{array}\right\}$

Question Number	Answer	Additional guidance	Mark
4(a)	1. they are \{ undifferentiated/unspecialised \} (cells) 2. that \{ divide continuously/ have unlimited cell division \}; 3. idea that they can become any cell type ; 2 ACCEPT no Hayflick limit		
		3. ACCEPT all cell types 3. ACCEPT embryonic AND extra- embryonic tissues 3. ACCEPT so that a whole organism can be made	(2)

Question Number	Answer	Additional guidance	Mark
4(b)	1. increase in cell number /eq ; 2. cells will be genetically identical /eq ; 3. idea of an increase in the cell organelles during interphase ; 4. DNA replication \{ during S-phase / interphase \} ;	3. ACCEPT G1 G2	

Question Number	Answer	Additional guidance	Mark
4(c)	1. reference to differential gene expression ; 2. idea that some genes are \{ active / switched on / eq \} ; 3. idea of \{ transcription / mRNA produced \} at active genes ; 4. \{ proteins / polypeptides \} produced (from this mRNA) / eq ; 5. idea that this protein (permanently) modifies cell OR idea that this protein determines \{ cell structure / function \} ;	3. e.g. only active genes are transcribed	

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (a)}$	1. lemurs are found only on Madagascar ; 2. reference to geographical isolation ; 3. idea that there were different conditions on Madagascar ; 4. reference to natural selection; 5. resulting in formation of \{ new species / different species / new gene pools \}; 6. idea of adaptation to conditions ;	3. ACCEPT different selection pressures, or different conditions within Madagascar	

Question	Answer	Additional guidance	Mark
5(b)(i)	1. values read from graph correctly : 23, 49, 20, 2 ; 2. values added together correctly / 94 ; 3. $(94 \div 103) \times 100$ to give $91.26 / 91.3$ / 91 (\%);	CE applies throughout Correct answer alone gains three marks	(3)
Question Number	Answer	Additional guidance	Mark
5(b)(ii)	1. number of threatened species has increased between 2008 and 2012 / eq ; 2. has increased by 47 / has increased by 100% / has doubled; 3. more species of lemur classified as \{ critically endangered / endangered / vulnerable \}; 4. fewer species of lemur are near threatened ;	ACCEPT converse statements if in context of 2008 1. ACCEPT the threat of extinction has increased 2. ACCEPT CE from (b)(i) 3. ACCEPT all categories except near threatened have increased 4. NOT threat of extinction decreases 4. NOT just "threatened"	(4)

Question Number	Answer	Additional guidance	Mark
5(b)(iii)	Any two from:	1. ACCEPT increase in	
1. decrease in \{ habitat / food / eq \} ;			
2. idea of increased problems due to low genetic diversity ;			
3. increase in hunting / predation / eq ;	4. increased risk of disease ; 5. increase in pollution ; 6. idea that the reduced number of lemurs in the near threatened category is due to \{ conservation / becoming more threatened \} ;	6.ACCEPT idea of reintroduction from captive breeding programmes	(2)

Question Number	Answer	Additional guidance	Mark
6(a)(i)	1. no effect until a concentration of greater than $20 \% /$ eq ; 2. increase in number of bacteria killed between 20% and 80\% / eq ; 3. concentration \{ equal to / higher than / eq \} 80% killed all the bacteria / eq ;	1. ACCEPT no effect \{ below 20\% / from 0 to 20% \} 2. ACCEPT pieced together statements between 20\%/40\% and 40\%/80\% 3. IGNORE graph levels off between 80-100\% 3. NOT there is no effect from 80 100\%	(2)

Question Number	Answer			Additional guidance	Mark
7(a)	B				
	ribosome	rough endoplasmic reticulum	Golgi apparatus		
	Polypeptide chain move through th apparatus where sequence is inco	e synthesised on the toplasm in the RER to are modified. Ther	me and then olgi y other		(1)

Question Number	Answer	Additional guidance	Mark
$\mathbf{7 (b)}$	1. idea that this is where \{ protein / polypeptide \} synthesis occurs;	1. ACCEPT translation	
2. using radioactive amino acids ;	2. ACCEPT idea of radioactive amino acids being transported to \{ P / ribosome $\}$	(2)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{7 (\mathbf { c }) (\mathbf { i })}$	1. it increases between 10 and 20 minutes ; 2. it decreases after 20 minutes;	1. ACCEPT between 5 and 20 minutes 2. ACCEPT between 20 and 40 minutes	(2)

Question Number	Answer	Additional guidance	Mark
7(c)(ii)	1. idea that \{ proteins / polypeptides \} \{ enter / are in / move through \} Q 2. idea that \{ proteins / polypeptides \} are \{ packaged in vesicles / transported to R / transported to Golgi apparatus \} ;	ACCEPT \{ RER / eq \} as alternative to Q throughout transported	

Question Number	Answer	Additional guidance	Mark
7(d)(i)	1. idea that some of the proteins are $\{$ for intracellular use / synthesised on free ribosomes \} ; 2. idea that some of the proteins \{ are still in vesicles / remain in the RER / Q \} ; 3. idea that some $\{$ amino acids / proteins $\}$ were in the cytoplasm ; 4. idea of radioactive decay ;	ACCEPT polypeptides as eq to proteins throughout answer 1. ACCEPT idea that not all proteins need modification 1. ACCEPT some proteins are made \{ in mitochondria / on mitochondrial ribosomes \} 2. ACCEPT some vesicles have not reached the Golgi / R	(2)

Question Number	Answer	Additional guidance	Mark
7(d)(ii)	1. levels will decrease / eq ;	1. ACCEPT stated values below 20 e.g. zero / 5	
	2. as proteins \{ move into vesicles / move into lysosome / are secreted from cell / are removed by exocytosis \};	2. ACCEPT due to radioactive decay /eq 2. ACCEPT non-radioactive amino acids now being used	(2)

Question Number	Answer	Mark
$\mathbf{8 (a)}$	1. The only correct answer is B as the zygote is diploid and the fertilised endosperm nucleus is triploid \boldsymbol{A} is not correct because the endosperm nucleus is triploid \boldsymbol{C} is not correct because the zygote is diploid and the fertilised endosperm nucleus is triploid \boldsymbol{D} is not correct because the zygote is diploid	

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (i)}$	1. idea of preventing contamination of cultures ; 2. $\{$ bacteria / eq \} could use the $\{$ nutrients / oxygen / eq \};	1. ACCEPT to prevent infection of plants 1. ACCEPT to prevent growth of bacteria / fungi / microorganisms 2. ACCEPT compete for nutrients / oxygen / other named nutrient IGNORE food / resources	
3. \{ bacteria / eq \} could cause disease of plants /explants /eq ; 4. bacteria / eq \} could be \{ harmful / pathogenic / eq \} to humans ;	3.ACCEPT $\{$ bacteria / eq $\}$ could produce chemicals/toxins that could poison the plants	(3)	

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (i i)}$	1. idea that \{stem / meristem / totipotent \} cells were needed;	1. IGNORE undifferentiated cells needed	
	2. as they are capable of \{dividing / differentiating /eq \};	2. ACCEPT undergoing mitosis as eq 2. ACCEPT differentiated cells would not divide	
	3. an example of a suitable named part of the plant stated ;	3. e.g. shoot tips or root tips	(2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (\text { iii })}$	1. chromosome drawn showing two chromatids;	1. ACCEPT simple line drawings and IGNORE any drawings of nuclear spindle. 1. IGNORE labels when assessing mp1	
	2. one/both of the chromatids labelled correctly;	2. and 3. ACCEPT phonetic spellings 2. and 3. IGNORE any other labels	(3)

Question Number	Answer	Additional guidance	Mark		
8(c)	1. idea of \{ preserving / storing / eq \} seeds ; 2. in large numbers to maintain \{ genetic diversity / gene pool \} ; 3. idea of growing seeds to \{ produce more plants / obtain more seeds \}; 4. idea that these plants / seeds could be \{ planted in the wild / natural habitat \} ;	2. IGNORE increasing \{ genetic diversity / gene pool \}	environmental conditions are right	$⿻$	(2)
:---					

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

