Mark Scheme (Results)

Summer 2017
Pearson Edexcel International Advanced Level
In Biology (8BIO1) Paper 01
Core Cellular Biology and Microbiology

edexcel :"

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017

Publications Code 8BIO1_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
$\mathbf{1 (a)}$	$\mathbf{1 (a) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~}$ \boldsymbol{A} is not correct because this describes Endoplasmic reticulum which is involved in protein synthesis not modification	
B is not correct because this describes centrioles \boldsymbol{D} is not correct because this describes a ribosome which is involved in synthesis (not modification) and is much smaller	(1)	

Question Number	(b). The only correct answer is C Answer $\mathbf{1 (b)}$	A is not correct because Q describes a chloroplast which is not found in an animal cell B is not correct because chloroplasts are not found in animal cells, but they are found in plant cells, animal cells would also contain mitochondria (R)
D is not correct because chloroplasts are not found in animal cells, plant cells would also contain mitochondria (R)	Mark	

Question Number	Answer	Mark
$\mathbf{1 (c)}$	$\mathbf{1 (c) . T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ A ~}$	
	B is not correct because $6 \mu \mathrm{~m}$ is 6000 nm which is bigger than 2500nm	
	\boldsymbol{C} is not correct because $10^{-9} \mathrm{~m}$ is a nanometer so the smallest not the largest organelle	
	D is not correct because they are listed from largest to smallest in this sequence	(1)

Question Number	Answer	Mark
1(d)	1(d). The only correct answer is C \boldsymbol{A} is not correct because Q (chloroplast), R (mitochondria) and T (nucleus) all have DNA B is not correct because Q (chloroplast), R (mitochondria) and T (nucleus) all have DNA \boldsymbol{D} is not correct because because only Q (chloroplast), R (mitochondria) and T (nucleus) have DNA. P is a ribosome, S is the Golgi and each of the organelles containing DNA each has a double membrane	(1)

Question Number	Answer		Mark
$\mathbf{1 (e)}$	Correct calculation	Example of calculation	
		$(13 \div 37) \times 100=35.1$	

Question Number	Answer		Mark
2(a)	A description that makes reference to the following: - part of a chromosome breaks off - this then joins to another (non-homologous) chromosome	ACCEPT one mark only for an answer that makes reference to \{part of a chromosome / genes\} being swapped between (nonhomologous) chromosomes ACCEPT phosphodiester bonds break ACCEPT genes or section of DNA DO NOT ACCEPT parts of a gene DO NOT ACCEPT homologous chromosome	(2)

Question Number	Answer		Mark
2(b)	Non-disjunction	ACCEPT Translocation, polysomy, aneuploidy, trisomy, partial trisomy, partial aneuploidy	(1)

Question Number	Answer		Mark
2(c)	An explanation that makes reference to the following: - polysomy / not Down's Syndrome - because \{of chromosome 13 / more than two copies of one chromosome\}	ACCEPT trisomy, aneuploidy DO NOT ACCEPT has \{Turner's / Down's\} Syndrome ACCEPT chromosome 21 only two copies ACCEPT extra chromatid	(2)

Total for Question 2 = 5 MARKS

Question Number	Answer		Mark
3 (a)	3(a). The only correct answer is B \boldsymbol{A} is not correct because chromatids are visible in metaphase \boldsymbol{C} is not correct because the first two statements only occur in meiosis not mitosis D is not correct because the first two statements only occur in meiosis not mitosis		(1)
Question Number	Answer	Additional Guidance	Mark
3 (b)(i)	An explanation that makes reference to the following: - a stain is needed to see chromosomes that would not be clearly visible - because the stain must attach to \{chromosomes / DNA / histone\} (1)	ACCEPT can see chromatids, nucleus ACCEPT \{take up / absorb\} stain	(2)

Question Number	Answer	Additional Guidance	Mark	
3(b)(ii)	A description that makes reference to four of the following:			
	- use $\{5 \mathrm{~mm} /$ shorter $\}$ piece of root tip	(1)		
	- add acid and then stain separately	(1)	ACCEPT use more concentrated acid	
	- heat the root tip in $\{$ acid / stain $\}$	(1)		
	- tease the cells apart before staining	(1)	ACCEPT maceration	

Total for Question 3 = 7 MARKS

Question Number	Answer	Additional Guidance	Mark
4(a)	An explanation that makes reference to the following: - glycogen is a \{polymer / polysaccharide\} - therefore glycosidic bonds need to be broken	DO NOT ACCEPT glucose $\{$ is a polysaccharide/ has more glycosidic bonds\} ACCEPT description of polysaccharide structure ACCEPT needs hydrolysis before it can be used in respiration	(2)

Question Number	Answer	Additional Guidance	Mark
4(b)(i)	An explanation that makes reference to three of the following: - carbohydrates and proteins are \{hydrophilic / polar\} molecules - triglycerides are \{hydrophobic / non polar\} molecules - therefore water will associate with proteins and carbohydrates - but be repelled by the triglycerides	ACCEPT \{absorb / bond to\} water ACCEPT can't bond to water	(3)

Question Number	Answer	Additional Guidance	Mark
4(b)(ii)	An explanation that makes reference to two of the following: - triglycerides store more energy per gram than carbohydrates and proteins in both wet and dry matter - because it has a high \{carbon / hydrogen\} content (1) - because it contains no water	ACCEPT low oxygen content	(2)
Question Number	Answer	Additional Guidance	Mark
4(b)(iii)	An explanation that makes reference to the following: - units given for energy only - therefore a comparison cannot be made	ACCEPT no indication of mass	(2)

Question Number	Answer	Additional Guidance	Mark
5(a)	An answer that makes reference to the following: Similarities - cytoplasm - cell membrane - ribosomes Differences - eukaryotic cells contain \{Membrane-bound organelles / named example e.g. mitochondria \}, prokaryotic cells do not - eukaryotic cells have 80S ribosomes, prokaryotic cells have 70S ribosomes - eukaryotic cells have \{a nucleus / nuclear envelope \}, prokaryotic cells \{have a nucleoid / do not have a nucleus\} - some eukaryotic cells have a cellulose cell wall and prokaryotic cells have a \{murein / peptidoglycan\} cell wall	Max of 3 marks if only differences given ACCEPT eukaryotic cells have larger ribosomes ACCEPT as comparison: prokaryotes have free-floating genetic material (in the cytoplasm)	(4)

Question Number	Answer	Additional Guidance	Mark
5(b)(i)	A description that makes reference to three of the following: - composed of nucleotides / nucleotides described - nucleotides held together by phosphodiester bonds - complementary base pairs held together by hydrogen bonds - two \{sugar phosphate backbones / polynucleotide chains / DNA strands\} that form a double helix	ACCEPT description e.g. between named base pairs	(3)

Question Number	Answer	Additional Guidance	Mark
5(b)(ii)	An explanation that makes reference to the following: - the DNA strands will not be able to separate / no template strand will be available - leading to inhibition of \{transcription / mRNA synthesis / RNA polymerase binding to DNA\} - DNA of both cell types are the same (structure) so both cell types affected	ACCEPT DNA can't be unzipped	(3)

Question Number	Answer	Additional Guidance	Mark
5(b)(iii)	An explanation that makes reference to the following: - will inhibit \{transcription / mRNA synthesis\} - because the RNA polymerase \{will be inhibited / will not be able to bind to the DNA\} - each antibiotic affects different cell types because the (structure of) RNA polymerases are different	ACCEPT cannot catalyse the reaction, prevent enzyme-substrate complex formation	(3)

Question Number	Answer	Mark
$\mathbf{6 (a) (\mathbf { i })}$	$\mathbf{6 (a) (\mathbf { i }) . \text { The only correct answer is B }}$	
	\boldsymbol{A} is not correct because lambda phage does not have an envelope	
	\boldsymbol{C} is not correct because both lambda phage and tobacco mosaic virus do not have envelopes	
\mathbf{D} is not correct because tobacco mosaic virus does not have an envelope		

Question Number		Answer
$\mathbf{6 (a) (i i)}$	$\mathbf{6 (a) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ A ~}$	Mark
	\boldsymbol{B} is not correct because lambda phage does not have a helical capsid	
\boldsymbol{C} is not correct because neither HIV or lambda phage have a helical capsid		
\boldsymbol{D} is not correct because HIV does not have a helical capsid		

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{6 (b) (i)}$	A description that makes reference to the following:			
	- virus \{attaches to / penetrates\} host cell	(1)	ACCEPT virus genetic material goes into the cell	
	- assembly of virus particles from synthesised \{DNA / RNA\}	ACCEPT virus replicates		
	and proteins	(1)		
	(immediate) lysis of the host cell	(1)	DO NOT ACCEPT exocytosis	(3)

Question Number	Answer		Additional Guidance	Mark
6(b) (ii)	- number of bacteria in $0.25 \mathrm{~cm}^{3}$ - number of phage needed to give MOI of 0.5 - answer = volume of phage needed	(1) (1) (1)	Example of calculation $\begin{aligned} & 8 \times 10^{8} \div 4=2 \times 10^{8} \\ & 0.5 \times 2 \times 10^{8}=1 \times 10^{8} \\ & 1 \times 10^{8} \div 2 \times 10^{9}=0.05 \mathrm{~cm}^{3} \end{aligned}$ ACCEPT 1 mark for calculation of MOI as 2.5 for using equal volumes of the concentrations given Correct answer with no working gains full marks	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (a) (\mathbf { i })}$	An explanation that makes reference to the following: - glycine is very small so the collagen fibres are very close together (1) so this allows the formation of bonds that hold the polypeptide chains together	ACCEPT amino acids have small R groups which enables the proteins to be close together	

Question Number		Answer	Mark
$\mathbf{7 (a) (i i)}$	$\mathbf{7 (a) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~}$		
	\boldsymbol{A} is not correct because ester bonds are involved in bonding carboxyl and OH groups		
	B is not correct because glycosidic bonds are found in carbohydrates \boldsymbol{D} is not correct because peptide bonds join the amino acids in the individual polypeptide chains, not between the chains as there are no free carboxyl and amino groups along the length of the chain	(1)	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (b) (i)}$	A response that makes reference to the following: - the collagen with hydroxyproline has more helix present than collagen without hydroxyproline (at higher temperatures)	ACCEPT collagen without hydroxyproline loses helical structure at lower temperature therefore hydroxyproline must be responsible for holding the helix together	(1) ACCEPT hydroxyproline maintains strength of collagen

Question Number	Answer	Additional Guidance	Mark
7(b) (ii)	A response that makes reference to the following: - the T_{s} values for collagen with hydroxyproline is $49^{\circ} \mathrm{C} /$ collagen without hydroxyproline is $15^{\circ} \mathrm{C}$ - therefore presence of hydroxyproline increases the thermal stability of collagen - calves will have the most stable collagen - which is necessary as calves have the highest body temperature	ACCEPT prevents helical structure breaking down ACCEPT converse ACCEPT converse / correlation between the two variables e.g. calf has the highest \% of hydroxyproline and highest body temperature	(4)

Question Number	Answer		Additional Guidance	Mark
8(a)	- percentage of each polypeptide in each type of haemoglobin - total percentage of a chains given - ratio calculated	(1) (1) (1)	Example of calculation $\begin{aligned} & \mathrm{HbA}_{1}: a=48 \quad \beta=48 \\ & \mathrm{HbA}: a=1.5 \quad \delta=1.5 \\ & \mathrm{HbF}: a=0.5 \quad \gamma=0.5 \\ & \mathrm{a}=48+1.5+0.5=50 \\ & a: \beta: \delta: Y=100: 96: 3: 1 \end{aligned}$ Correct answer with no working gains full marks Award 2 marks for 200 :192: 6: 2 OR 50: 48: 1.5: 0.5	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
8(b)	A response that makes reference to the following: Similarities - there will be $\{27$ bases / 9 triplet codons $\}$ in the sequence - all three will have the code for \{ phe / amino acid 1 / amino acids 4-9 / leu, ser, glu, leu, his, cys $\}$ - β and y will both code for the same amino acid 2 / δ and y will both code for the same amino acid 3 Differences - the sequence of bases in the code for the same amino acid might be different - $\{\beta$ and δ will have different sequences for amino acids 2 and $3 / \beta$ and γ different for amino acid $3 / \delta$ and Y different for amino acid 2$\}$	ACCEPT they have the same number of (DNA) bases ACCEPT triplet sequence is the same for ... / same codon ACCEPT if clear context of bases coding for ... in the whole response ACCEPT if clear context of bases coding for ... in the whole response	(4)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (c) (\mathbf { i })}$	change in the base sequence or quantity of DNA	(1)	

| Question
 Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{8 (c) (i i)}$ | An explanation that makes reference to the following: | | |
| | • the oxygen-carrying capacity of the haemoglobins are
 very similar | ACCEPT have similar saturation of O_{2}
 ACCEPT HbF has better O_{2} carrying | |
| ability | | | |

Question Number	Answer	Additional Guidance	Mark	
$\mathbf{9 (a) (\mathbf { i })}$	A drawing that includes the following:			
	- only cell K drawn	(1)		
	- the shape of the cell and its nuclei are representative of			
those in the photograph	(1)			
	- there is no sketching or other structures shown	(1)		
	- drawn cell is twice the size of cell in the photograph	(1)	(4)	

Question Number	Answer	Additional Guidance	Mark
9(a)(ii)	A description that makes reference to the following: - measure the length of the blood cells using an \{eye piece / stage \} micrometer - divide the length by the magnification of the objective / calibrate the graticule using a stage micrometer - more than one measurement taken - divide this value into the length of the blood cells in the drawing	ACCEPT use an eyepiece graticule E.g. repeats, length and breadth	(4)

Question Number	Answer	
9*(b)	Answers will be credited according to candidates' deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. - data used to support trends e.g. figures quoted / calculation done - table 1 shows that resolution increases with an increase in numerical aperture - table 2 shows an increase in wavelength decreases the resolution - table 1 suggests an increase in magnification increases the resolution - comparison of objectives with the same magnification shows that increase in numerical aperture increases resolution - at higher magnifications shorter wavelengths of light would need to be used to achieve maximum resolution	
Level	Marks	
0	0	No awardable content
1	1-2	Demonstrates isolated elements of biological knowledge and understanding to the given context with generalised comments made. Vague statements related to consequences are made with limited linkage to a range of scientific ideas, processes, techniques and procedures. Attempts to comment on each of the factors but fails to understand that a small value represents better resolution
2	3-4	Demonstrates adequate knowledge and understanding by selecting and applying some relevant biological facts/concepts. Consequences are discussed which are occasionally supported through linkage to a range of scientific ideas, processes, techniques and procedures. Understands that a small value means better resolution and correct comments made about two

		variables using quoted data.
3	$5-6$	Demonstrates comprehensive knowledge and understanding by selecting and applying relevant knowledge of biological facts/concepts. Consequences are discussed which are supported throughout by sustained linkage to a range of scientific ideas, processes, techniques or procedures. Correct comments made about the interaction of the three variables on resolution.

Total for Question 9 = 14 MARKS
TOTAL FOR PAPER $\mathbf{=} \mathbf{8 0}$ MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

Ofqual

Rewarding Learning

