Mark Scheme (Results)

October 2018

Pearson Edexcel International
Advanced Subsidiary Level
In Chemistry (WCH01)
Paper 01 Core Principles in Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018
Publications Code WCH01_01_1810_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	The only correct answer is B A is not correct because 6 HF and $2 \mathrm{H}_{2} \mathrm{O}$ are needed to balance the equation. C is not correct because 6 HF and $2 \mathrm{H}_{2} \mathrm{O}$ are needed to balance the equation. D is not correct because 6 HF and $2 \mathrm{H}_{2} \mathrm{O}$ are needed to balance the equation. (1)	

Question Number	Correct Answer	Mark
$\mathbf{2}$	The only correct answer is B A is not correct because the $0.06 \mathrm{~g} \mathrm{~kg}^{-1}$ is 60 ppm and this can be safely exceeded C is not correct because this equals 6000 ppm D is not correct because this equals 60000 ppm	(1)

Question Number	Correct Answer	Mark
$\mathbf{3}$	The only correct answer is B	(1)
	\mathbf{A} is not correct because mol chloride $=3 \times 10^{-4}<6 \times 10^{-4}$	
	\mathbf{C} is not correct because mol chloride $=4.5 \times 10^{-4}<6 \times 10^{-4}$	
\mathbf{D} is not correct because mol chloride $=5 \times 10^{-4}<6 \times 10^{-4}$		

Question Number	Correct Answer	Mark
$\mathbf{4}$	The only correct answer is D	(1)
	\mathbf{A} is not correct because the lighter ion is deflected more	
	B is not correct because the Fe^{2+} ion has one more electron \mathbf{C} is not correct because the Fe^{2+} ion has an extra proton	

Question Number	Correct Answer	Mark
$\mathbf{5}$	The only correct answer is C (To make solution $1 / 20$ as concentrated, total volume would be $200 \mathrm{~cm}^{3}$ produced by adding $190 \mathrm{~cm}^{3}$ to $10 \mathrm{~cm}^{3}$) A is not correct because this is the dilution factor B is not correct because this is just based on 5-fold increase in volume D is not correct because the final volume would be $210 \mathrm{~cm}^{3}$	(1)

Question Number	Correct Answer	Mark
$\mathbf{6}$	The only correct answer is B (There is 0.5 mol NO and each molecule contains 2 atoms so answer is $0.5 \times 2 \times \mathrm{L})$ A is not correct because this is $0.5 \times \mathrm{L}$ C is not correct because this is $(2 / 0.5) \times \mathrm{L}$ D is not correct because this is $15 \times \mathrm{L}$	(1)

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is C A is not correct because this ignores excess oxygen B is not correct because this assumes all NO and O_{2} are used up \mathbf{D} is not correct because this assumes O_{2} is not used up	(1)

Question Number	Correct Answer	Mark
$\mathbf{8}$	The only correct answer is A B is not correct because X is in Group 4 and this is a Group 6 oxide formula C is not correct because X is in Group 4 and this is a Group 1 oxide formula D is not correct because X is in Group 4 and this is a Group 3 oxide formula	(1)

Question Number	Correct Answer	Mark
$\mathbf{9}$	The only correct answer is B	(1)
	A is not correct because it counts sub-shells not orbitals \mathbf{C} is not correct because it includes $3 p_{z}$ Dis not correct because it treats the subshells as single	

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	The only correct answer is A C is not correct because ionic radii decrease across the series the group D is not correct because this is only true for the first 4 elements in the period.	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	The only correct answer is B A is not correct because it is less easy to polarise bromide than iodide ions. C is not correct because potassium ions polarise anions less than lithium. \mathbf{D} is not correct because potassium ions polarise anions less than lithium.	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	The only correct answer is \mathbf{D} A is not correct because it is the mass of $4 \mathrm{H}_{3} \mathrm{PO}_{4}$ divided by the mass of $\mathrm{P}_{4}+5 \mathrm{O}_{2}+\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O}(\times 100)$ \mathbf{B} is not correct because it is the mass of $4 \mathrm{H}_{3} \mathrm{PO}_{4}$ divided by the mass of $\mathrm{P}_{4}+5 \mathrm{O}_{2}+\mathrm{P}_{4} \mathrm{O}_{10}(\times 100)$	(1)
C is not correct because it is the mass of $\mathrm{P}_{4}+5 \mathrm{O}_{2}$ divided by the mass of $4 \mathrm{H}_{3} \mathrm{PO}_{4}(\times 100)$		

Question Number	Correct Answer	Mark
$\mathbf{1 3 (a)}$	The only correct answer is A	(1)
	B is not correct because carbonate ions are not spectators	
	C is not correct because carbonate ions are not spectators	
D is not correct because HCl is fully ionised		

Question Number	Correct Answer	Mark
$\mathbf{1 3 (b)}$	The only correct answer is C	(1)
	A is not correct because this uses $1 / 20$ instead of 0.2	
	B is not correct because it is based on a $2: 1$ ratio	

Question Number	Correct Answer	Mark
$\mathbf{1 3 (c)}$	The only correct answer is C	(1)
	A is not correct because this based on ratio $4.0: 0.2$	
	B is not correct because ratio $1: 2$ for $\mathrm{NiCO}_{3}: \mathrm{HCl}$ not used D is not correct because it is twice the amount needed	

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	The only correct answer is C	(1)
	A is not correct because mol reacting $=0.2$ not 0.4 B is not correct because mass of solution $=200 \mathrm{~cm}^{3}$ and mol reacting $=0.2$ and energy transferred should be divided by number of mol \mathbf{D} is not correct because mass of solution $=200 \mathrm{~cm}^{3}$ and energy transferred should be divided by number of mol	

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	The only correct answer is B	(1)
	A is not correct because this is 90% of 30 tonnes of hydrogen \mathbf{C} is not correct because this is $160 \times 6 / 16$ (ie mass $3 \mathrm{H}_{2} /$ mass CH_{4}) \mathbf{D} is not correct because this is $60($ the mass of hydrogen) $/ 0.9$	

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	The only correct answer is D A is not correct because the name is not based on the longest carbon chain in the monomer	(1)
B is not correct because the name is not based on the longest carbon chain in the monomer \mathbf{C} is not correct because this monomer has 7C atoms		

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	The only correct answer is A	(1)
	B is not correct because the Ca: C ratio is inverted \mathbf{C} is not correct because this is related to mass, not mol D is not correct because Ca:C ratio is incorrect	

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	The only correct answer is \mathbf{D}	(1)
	\mathbf{A} is not correct because only acidified KMnO_{4} gives this product	
	B is not correct because only acidified KMnO_{4} gives this product	
C is not correct because only acidified KMnO_{4} gives this product		

(Total for Section A = $\mathbf{2 0}$ marks)

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	M1		(3)
	\% of fourth isotope $=18.60$		
	ALLOW		
	18.6(0) or $0.186(0)$ used in the calculation, even if not explicitly stated		
	M2		
	$((64 \times 49.00)+(66 \times 27.90)+(67 \times 4.50))+18.6 \mathrm{x}$	((64 x 49.00)	
	$=65.44$	$+(66 \times 27.90)$	
		$+x$	
	OR	$=65.44$	
	$\frac{((64 \times 49.00)+(66 \times 27.90)+(67 \times 4.50))}{100}$		
	$=52.79$		
	$\frac{(65.44-52.789) \times 100}{18.60}=68.016$		
	OR $\frac{((64 \times 49.00)+(66 \times 27.90)+(67 \times 4.50))}{100}$		
	$=52.79$		
	$(65.44-52.79)=12.65$		
	$\begin{equation*} 18.6 x=12.65 \tag{1} \end{equation*}$		
	100		
	$\begin{aligned} & \text { M3 } \\ & (x=68.016) \end{aligned}$		
	Isotopic mass $=68$		
	Final answers of 68.0 / 68.01/68.02 / 68.016 score 2 Correct answer with no working scores max 2	Isotopic mass to more than 2SF	

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	No difference And chemical properties depend on electron(ic) configuration/ electron(ic) structure/ same outer shell electrons ALLOW On number of electrons (which is the same) IGNORE Number of protons is same number of neutrons differs	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (b) (\mathbf { i })}$	M1 To accelerate ions / To make ions travel at same speed / ALLOW Just "acceleration" IGNORE To control velocity M2 To select ions travelling in same direction / In one direction / on same path ALLOW In a straight line OR To produce a (fine) beam (of ions) OR To focus ions IGNORE To form ions / to deflect ions / to detect ions / to deviate ions / to concentrate ions Description of other parts of mass spectrometer		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (b) (i i)}$	Using a magnetic field / an electromagnet field / a magnet / an electromagnet IGNORE By deflection By their mass By their charge	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (b) (i i i) ~}$	Mass/ charge (ratio)	(1)	
	ALLOW	Mass per electron Mass of charge Mass and charge	
	Mass to charge ratio / value Mass:charge Mass over charge Mass per (unit) charge Mass divided by charge Mass relative to charge	Mass compared to charge	
IGNORE m/e m/z Charge density			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c)}$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}$		(1)
	OR $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$ OR For 2p and/or 3p: $p_{x}{ }^{2} p_{y}{ }^{2} p_{z}^{2}$		

Question Number	Acceptable Answers	Reject	Mark
19(d)	M1 Diagram of regular lattice of positively charged ions with electrons between them and at least 2 rows and 2 columns of ions. ALLOW touching circles. Ions may be shown as particles with + , $2+$, or as Zn^{2+} ALLOW Zn^{+} Electrons may be shown as e, e^{-}, - or circle with - charge. Number of electrons should be approximately equal to number of + charges shown IGNORE Lines joining nuclei M2 Electrons are delocalised (stated or on label of diagram) ALLOW Are mobile/ free/ sea of electrons M3 Held together by electrostatic forces OR attraction of opposite charges OR forces between + and - charges OR force between positive nuclei/ions and electrons ALLOW Just "forces between charges" if + and - are shown in diagram. IGNORE The attractions are metallic bonds	Electrons just around the edge of lattice Circles that overlap Ions labelled protons Electrons double number of + Attractions between atoms and electrons London forces	(3)

(Total for Question 19 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (\mathbf { i })}$	Cross shown above level of P (vertically above 16) $($ actual value = 2251)		(1)
	ALLOW $2100-2400$ IGNORE A solid line or dotted line joining the crosses		

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	$\mathrm{Al}^{+}(\mathrm{g}) \rightarrow \mathrm{Al}^{2+}(\mathrm{g})+\mathrm{e}^{(-)}$ ALLOW $\begin{align*} & \mathrm{Al}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Al}^{2+}(\mathrm{g}) \\ & \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Al}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)} \tag{1} \end{align*}$ Equation State symbols ALLOW as long as a reasonable attempt to write the equation e.g. correct third ionisation energy Or $\begin{equation*} \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Al}^{2+}(\mathrm{g}) \tag{1} \end{equation*}$ IGNORE (g) on electron	Equations with Al^{-}	(2)

Question Number	Acceptable Answers	Reject	Mark
*20(a)(iii)	M1 In Mg and Al the second electron removed is from 3s / from the same orbital / from the same sub shell OR In Mg and Al the second electron has the same amount of shielding ALLOW Electron configurations of the Mg^{+}and Al^{+} ions M2 Al has more protons than Mg OR Al has higher nuclear attraction than Mg ALLOW Al has greater nuclear charge M3 The second electron in Si is removed from a (3)p orbital/sub-shell M4 (3)p higher (energy) than (3)s OR (3)p needs less energy to remove OR (3) p is more shielded than (3)s IGNORE Atomic radius/ distance from nucleus Comments on full versus half full orbitals	Reference to the charge on the ions	(4)

Question Number	Acceptable Answers	Reject	Mark
20(a)(iv)	Na And because electron is removed from a lower quantum shell / lower energy level / shell closer to the nucleus/ full p shell / full outer shell / level 2(p) ALLOW Na stable) The + ion with smallest (ionic) radius is Na^{+} Less shielding	K with correct explanation	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (\mathbf { i })}$	ONE clear difference needed	(1)	
	Magnesium chloride conducts when molten OR when liquid OR in (aqueous) solution and If no state mentioned	Sulfur dichloride does not conduct (when solid, liquid or gas)	(wat

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	$C_{00}^{\infty} \times \int_{0}^{x} \int_{0 \times}^{x} \times C_{0}^{\infty}$ Two single bonds each with one shared pair of electrons Rest of diagram (remaining electrons) ALLOW circles for dots reversed symbols for electrons Shared pair beside each other Non bonded electrons not shown in pairs IGNORE Inner electrons even if incorrect Bond angles	All electrons shown the same	(2)

Question number	Acceptable Answers	Reject	Mark
20(b)(iii)		(1)	
	ALLOW going round all three atoms diagrams showing three unlabelled atoms diagram with at least one contour line going round one S and both Cl diagrams without inner contour lines round individual atoms diagrams without indentations	Ions in diagram	round just 2 nuclei
IGNORE Orientation/ bond angles of the three atoms	round S and Cl_{2}		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i v)}$	There is no overlap of the (contour) lines around each ion OR there are separated circles / each ion has discrete contour lines/ contour line do not go around more than one nucleus there are gaps between ions/ electron density is zero between ions ALLOW Contour lines do not join Information on diagram Separate circles round Mg^{2+} and 2Cl	No overlap of orbitals	Mg^{2+} and Cl_{2}
(Cl)			

Question Number	Acceptable Answers	Reject	Mark
20(c)(i)	```\(\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{g})\left(+2 \mathrm{e}^{-}\right)\) and \(\mathrm{Mg}^{+}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{g})\left(+\mathrm{e}^{-}\right)\) \(\uparrow\) \(\mathrm{Mg}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{g})\) \(\uparrow\) \(\mathrm{Mg}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})\) \\ \(\uparrow\) \\ \(\left(\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})\right)\) \\ \(\downarrow\) \\ \(\mathrm{MgCl}_{2}\) (s)``` ALLOW Atomisation of Mg and Cl_{2} in either order Ionisation of Mg before atomisation of Cl_{2} IGNORE Number of electrons shown Missing state symbol for chlorine Values added beside arrows	$2 \mathrm{Cl}^{-}(\mathrm{g})$ on top line	(4)

Question Number	Acceptable Answers				Reject	Mark
20(c)(ii)	```Lattice energy = -641.3-(147.7 + 738 + 1451 + 2(121.7) + 2(-348.8))```					(2)
	$=-2523.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$					
	Correct method (1)					
	Final answer with sign (1)					
	ALLOW					
	$\mathrm{kJ} / \mathrm{mol}, \mathrm{kJ} \mathrm{mol}^{-}$ Final answer with no working scores				Incorrect unit	
	IGNORE					
	SF except 1 or 2 SF					
	COMMON ERRORS					
	-2872.6	Omission of 2x EA of Cl	(1)			
	-2402.1	Omission of $2 x$ atomisation of Cl	(1)			
	-2750.9	Omission of $2 \times \mathrm{EA}$ of Cl and $2 x$ atomisation of Cl	(1)			
	+2523.8	Incorrect use of Hess	(1)			
	-3919	Incorrect sign with atomisation of 2 Cl	(1)			

(Total for Question 20 = 19 marks)

Question Number	Acceptable Answers	Reject	Mark
21(a)	M1 For correct species with state symbols in the lower box and linked to top line by arrows ALLOW Unlabelled arrows / arrows labelled $\Delta \mathrm{H}$ Addition of $\mathrm{O}_{2}(\mathrm{~g})$ shown on both arrows IGNORE Direction of arrows M2 $\begin{align*} & \Delta H^{\ominus} \text { reaction }=(-(285.8 \times 2)-50.6) \\ & =-622.2\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$		(2)

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	The total enthalpy changes for breaking and making bonds need not be shown if the method of calculating them is shown or if M3 is correct. Correct answer with no working scores (3) M1 Energy to break bonds: $\mathrm{N}-\mathrm{N} \quad 158$ $4 \times \mathrm{N}-\mathrm{H} \quad(4 \times 391=) 1564$ $\mathrm{O}=\mathrm{O} \quad 498$ Total: (+)2220 (kJ mol$\left.{ }^{-1}\right)$ M2 Energy from making bonds: $\mathrm{N} \equiv \mathrm{N} \quad 945$ $4 \times \mathrm{O}-\mathrm{H} \quad(4 \times 464=) 1856$ Total: (-)2801 ($\mathrm{kJ} \mathrm{mol}^{-1}$) $\begin{equation*} \Delta H=158+4 \times 391+498-945-4 \times 464 \tag{1} \end{equation*}$ scores M1 and M2 M3 Value for M1-value for M2 If both correct ΔH ($=2220$ - 2801) $=-581\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ ALLOW TE for M3 on two wrong energy totals Ignore SF except 1 SF	Incorrect sign	(3)

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	M1 Bond energies are based on substances in the gaseous state OR the Hess cycle is using values for liquid(s) ALLOW Energy is released as water turns from gas to liquid / vaporisation of water is not included IGNORE The reaction is not done under standard conditions M2 Bond enthalpies (of $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$) are average / mean for the bond in different compounds OR Bond energies vary with the environment ALLOW Bond energies are different in different substances Mean bond energies do not equal real values	Substances aren't pure Incomplete reaction Heat loss	(2)

(Total for Question 21= 7 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	$\stackrel{L}{C l}^{\prime} \stackrel{\mathrm{CL}}{ } \rightarrow 2 \mathrm{Cl}^{\circ}$ Balanced equation including dot for radical(s) and $2 \mathrm{Cl} \bullet / \mathrm{Cl} \bullet+\mathrm{Cl} \bullet$ in products Curly half arrows ending on or close to Cl IGNORE UV above arrow	Use of full arrows	(2)

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 2 (a) (i i) ~}$	$\mathrm{C}_{10} \mathrm{H}_{22}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{C}_{10} \mathrm{H}_{21}{ }^{\circ}+\mathrm{HCl}$	(1)		(2)
$\mathrm{C}_{10} \mathrm{H}_{21}{ }^{\bullet}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Cl}+\mathrm{Cl}^{\bullet}$	(1)			
	ALLOW equations in either order max(1) for use of wrong alkane			
	IGNORE Curly arrows even if incorrect Non-subscript numbers			

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	$\mathrm{C}_{10} \mathrm{H}_{21}{ }^{\bullet}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Cl}$		(2)
	$\mathrm{C}_{10} \mathrm{H}_{21}{ }^{\bullet}+\mathrm{C}_{10} \mathrm{H}_{21} \cdot \rightarrow \mathrm{C}_{20} \mathrm{H}_{42}$		
	ALLOW equations in either order		
	product written $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{C}_{10} \mathrm{H}_{21}$		
	Termination steps in which a second Cl has been substituted eg		
	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Cl}^{\bullet}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Cl}_{2}$		
	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Cl}^{\bullet}+\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Cl}^{\bullet} \rightarrow \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{Cl}_{2}$		
	Radicals from incorrect alkanes combining		
	IGNORE		
	Curly arrows even if incorrect		
	$2 \mathrm{Cl} \bullet \rightarrow \mathrm{Cl}_{2}$		

Question Number	Acceptable Answers	Reject	Mark
22(b)	2,2,4-trimethylheptane	4,6,6-trimethylheptane	(1)
	ALLOW	2-dimethyl,4-methylheptane	
	4,2,2-trimethylheptane	2,2,4-trimethylseptane	
	2,2-dimethyl,4-methylheptane	2-dimethyl,4-methylheptane	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c)}$	$\mathrm{C}_{10} \mathrm{H}_{22}+101 / 2 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}+11 \mathrm{H}_{2} \mathrm{O}$ ALLOW Multiples, 21/2 for $101 / 2 \mathrm{O}_{2}, 10.5 \mathrm{O}_{2}$ IGNORE State symbols even if incorrect	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (d) (i)}$	$\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{4} \mathrm{H}_{8}$ ALLOW structural formulae IGNORE State symbols even if incorrect	(1)	

Question Number	Acceptable Answers	Reject	Mark
*22d(ii)	Any TWO of the following:	(2)	
	There is no free rotation/ there is restricted rotation (around a C=C bond / pi bond/ in alkenes)	Alkenes lack rotation "can't be flipped"	
	There are geometric isomers only if there are (two) different groups on each C at the end of the C=C bond (and some of the products do not meet this requirement)	Different "molecules" OR reverse argument	
Ethene/ but-1-ene/ 2-methylprop-1-ene have			
2 H atoms at one end of the double bond so would not have different (geometric) isomers			
ALLOW Answer even if it is not clear which alkene it refers to			

Question Number	Acceptable Answers	Reject	Mark
22(d)(iii)	Diagram of trans (E) but-2-ene		
ALLOW			
Fully displayed or skeletal formula			

(Total for Question 22 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark
*23(a)	M1: (In C=C) there is good/ "head-on" overlap of orbitals in the sigma bond M2: Sideways/ parallel overlap the p orbitals OR The p orbitals are parallel (so overlap is limited) in the pi bond ALLOW Information given on labelled diagram for both M1 and M2 can score (2) eg OR M3: pi bond breaks more easily/ is weaker (so the alkene is reactive) OR Region of high electron density between the carbon nuclei / above and below the C-C bond allows attack by electrophiles	Just ' $\mathrm{C}=\mathrm{C}^{\prime}$ consists of 1 sigma and 1 pi bond	(3)

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	M1: Correct dipole on HBr M2: Curly arrow from $\mathrm{C}=\mathrm{C}$ double bond to $\mathrm{H}^{\delta+}$ and curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to $\mathrm{Br}^{\delta-}$ M3: Structure of intermediate (secondary carbocation) M4: Arrow from anywhere on Br^{-}to C^{+}and formation of product Mechanism showing primary carbocation does not score MP3, but can score MP4 as a TE if final product is 1 -bromobutane. (Giving max 3) Penalise missing bonds and missing H atoms once only	Curly arrow from C atom	(4)

Question Number	Acceptable Answers	Reject	Mark		
23(b)(ii)	A secondary carbocation (intermediate) is more stable OR a primary carbocation is less stable	Just 'the intermediate is more stable'	(1)		
	2LLOW 2-bromopropane is more stable than 1- bromopropane				
$\mathrm{CH}_{3} \mathrm{CH}^{+} \mathrm{CH}_{3}$ is more stable than	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$			\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
23(c)	$\mathrm{n} \mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Br}$ \qquad M1 Structure of polymer and extension bonds ALLOW 2 monomer units inside the bracket Absence of brackets if n is correctly positioned IGNORE Structure of monomer M2 Balancing with n monomers and n after repeat unit ALLOW If dimer is shown 2 n monomers and n after repeat unit OR n monomers and $\mathrm{n} / 2$ in polymer M2 does not depend on M1 Balancing mark can be awarded if there is an error in drawing the polymer	Bond from C to Br	(2)

(Total for Question 23 = 10 marks)
(Total for Section B = 60marks)
Total for Paper = 80 marks

