Mark Scheme (Results)

October 2018

Pearson Edexcel International
Advanced Subsidiary Level
In Chemistry (WCH02)
Paper 01 Application of Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018
Publications Code WCH02_01_1810_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Answer	Mark
1	The only correct answer is B A is not correct because ionisation energy does not decrease linearly C is not correct because ionisation energy does not increase down a group D is not correct because ionisation energy does not increase down a group	(1)
Question Number	Answer	Mark
2	The only correct answer is \mathbf{C} A is not correct because calcium oxide is not the final product B is not correct because calcium oxide is not the final product and the equation is not balanced D is not correct because the equation is not balanced	(1)

Question Number	Answer	Mark
$\mathbf{3}$	The only correct answer is D	(1)
	A is not correct because barium and the bond are incorrect	
	B is not correct because barium is incorrect	

Question Number	Answer	Mark
$\mathbf{4}$	The only correct answer is A B is not correct because ionic radius does not determine flame colour C is not correct because numbers of electrons does not determine flame colour D is not correct because ionisation energies do not determine flame colour	(1)

Question Number	Answer	Mark
$\mathbf{5}$	The only correct answer is C \mathbf{A} is not correct because this is the number of moles in 2.12 g and $25.0 \mathrm{~cm}^{3}$ has not been used \mathbf{B} is not correct because this is the moles of solute in $500 \mathrm{~cm}^{3}$ of solution \mathbf{D} is not correct because 83 used as M_{r} for $\mathrm{Na}_{2} \mathrm{CO}_{3}$ instead of 106	(1)

Question Number	Answer	Mark
$\mathbf{6}$	The only correct answer is C A is not correct because the burette uncertainty has not been multiplied by 2 for 2 readings	(1)
B is not correct because the burette uncertainty has not been multiplied by 2 for 2 readings and the pipette uncertainty should not have been multiplied by 2	D is not correct because the pipette uncertainty should not have been multiplied by 2	

Question Number	Answer	Mark
$\mathbf{7}$	The only correct answer is D A is not correct because single bonds are longer than multiple bonds \mathbf{B} is not correct because single bonds are longer than multiple bonds \mathbf{C} is not correct because double bonds are longer than triple bonds	(1)

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is C	(1)
	\mathbf{A} is not correct because $\mathrm{CH}_{3}{ }^{+}$is not 107°	
	B is not correct because $\mathrm{CH}_{3}{ }^{+}$is not 107° and $\mathrm{CH}_{3}{ }^{-}$is not 120°	
	\mathbf{D} is not correct because $\mathrm{CH}_{3}{ }^{-}$is not 120°	

Question Number	Answer	Mark
$\mathbf{9}$	The only correct answer is D	(1)
	\mathbf{A} is not correct because cyclohexane is non-polar	
	\mathbf{B} is not correct because hexane is non-polar	
\mathbf{C} is not correct because tetrachloromethane is non-polar		

Question Number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is D A is not correct because it is unbranched and \mathbf{D} has 2 branches	(1)
B is not correct because it has one branch and \mathbf{D} has 2 branches \mathbf{C} is not correct because it has one branch and \mathbf{D} has 2 branches		

Question Number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is B	(1)
	\mathbf{A} is not correct because the trend is incomplete	
\mathbf{C} is not correct because the trend is incorrect		
\mathbf{D} is not correct because the trend is in reverse		

Question Number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is B A is not correct because ethanol is polar and has a lower solubility than octane in hexane	(1)
C is not correct because sodium chloride is ionic and does not dissolve in hexane	D is not correct because water is polar and does not dissolve in hexane	

Question Number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is C A is not correct because bromine changes from 0 to -1 and +1 B is not correct because chlorine changes from +1 to -1 and +5 D is not correct because iodine changes from 0 to -1 and +5	

Question Number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is B	(1)
	\mathbf{A} is not correct because this is the percentage of carbon in	
$\mathrm{C}_{6} H_{14}$	\mathbf{C} is not correct because this is the percentage of carbon in	
$\mathrm{C}_{6} H_{10}$		
	\mathbf{D} is not correct because this is the percentage of carbon in	
$C_{6} H_{6}$		

Question Number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is A	(1)
	B is not correct because this is the volume of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	
	D is not correct because this is the volume of O_{2} needed 0.2 mol propan-1-ol because this is the volume of CO_{2} formed from	

Question Number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is D	(1)
	A is not correct because both conditions are incorrect	
	\mathbf{B} is not correct because particle size is incorrect	
C is not correct because temperature is incorrect		

Question Number	Answer	Mark
$\mathbf{1 7}$	The only correct answer is A B is not correct because reason does not explain the change in equilibrium position	(1)
C is not correct because change in pressure is incorrect \mathbf{D} is not correct because reason does not explain the change in equilibrium position		

Question Number	Answer	Mark
$\mathbf{1 8}$	The only correct answer is A	(1)
	B is not correct because this is a description of a nucleophile	
	\mathbf{C} is not correct because this could not be an electrophile	
	\mathbf{D} is not correct because this is not true for all electrophiles	

Question Number	Answer	Mark
$\mathbf{1 9}$	The only correct answer is A B is not correct because the gas molecules do not form free radicals when they absorb ir radiation	(1)
C is not correct because the gas molecules do not absorb uv radiation \mathbf{D} is not correct because the gas molecules do not absorb uv radiation		

Question Number	Answer	Mark
$\mathbf{2 0}$	The only correct answer is D	(1)
	A is not correct because non-polar bonds do not absorb ir radiation B is not correct because this is only partly correct C is not correct because this is only partly correct	

(Total for Section A = 20 marks)

Section B

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 1 (a) (i)}$ | ALLOW OH | Skeletal and
 structural formulae
 C-H-O as horizontal
 bond on left or right
 of structure
 Incorrect number of
 carbon atoms
 Missing hydrogens /
 C-C bond(s) | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i i)}$	Sodium (metal)/ Na	Sodium hydroxide $/ \mathrm{NaOH}$ Sodium carbonate $/ \mathrm{Na}_{2} \mathrm{CO}_{3}$ Sodium hydrogencarbonate $/ \mathrm{NaHCO}_{3}$	(1)
	IGNORE Conditions eg room temperature / solid		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	ALLOW names or formulae but if both are given, both must be correct Reagents containing Cl : Phosphorus(V) chloride / phosphorus pentachloride / phosphorus(III) chloride / phosphorus trichloride / thionyl chloride ALLOW Hydrogen chloride / Conc hydrochloric acid and zinc chloride / Potassium chloride and concentrated / 50\% sulfuric acid OR Reagents containing Br : Potassium bromide and concentrated / 50\% sulfuric acid / (red) phosphorus and bromine ALLOW Hydrogen bromide OR Reagents containing I: Red phosphorus and iodine Phosphorus(III) iodide ALLOW hydrogen iodide IGNORE Conditions, except those in reject column	Mention of solution Dilute sulfuric acid Dilute sulfuric acid Just 'bromine' Phosphorus(V) iodide	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i) ~}$	Any one from:		(1)
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$		
OR			
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$		
OR			
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$			
	ALLOW Displayed or skeletal formulae IGNORE Names, even if incorrect Molecular formulae		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	ammonia / NH_{3} ALLOW $\mathrm{NH}_{3}(\mathrm{~g})$ IGNORE Conditions such as heat in a sealed tube / concentrated / in ethanol / in alcohol	Dilute ammonia / ammonia solution / $\mathrm{NH}_{3}(\mathrm{aq})$ $\mathrm{NH}_{3}{ }^{+} / \mathrm{NH}_{3}^{-}$ Ammonium $/ \mathrm{NH}_{4}{ }^{(+)}$	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i v) ~}$	To prevent the escape of ammonia (gas)/ NH3 (when heated under reflux)	To prevent the escape of 1-aminobutane	(1)
	ALLOW Ammonia would escape if heated under reflux OR To prevent the escape of $\mathrm{HCl} / \mathrm{HBr} / \mathrm{HI}$	IGNORE To increase the rate of reaction Reaction reaches completion Just 'to prevent (toxic) gas / vapour escaping' Just 'to prevent reactants / products escaping' Reference to low melting point of ammonia	

Question Number	Acceptable Answers	Reject	Mark
21(c)	 All 3 correct (2) Any 2 correct (1) ALLOW $\mathrm{OH} / \mathrm{CH}_{3}$ If no other mark is given, allow (1) for 3 correct skeletal / structural formulae IGNORE Connectivity of vertical OH groups, unless O H I C Names, even if incorrect	$\mathrm{O}-\mathrm{H}-\mathrm{C}-/-\mathrm{C}-\mathrm{H}-\mathrm{O}$ at end of molecule once only Missing H / C-C once only	(2)

Question Number	Acceptable Answers	Reject	Mark
21(d)(i)	 ALLOW $\mathrm{CH}_{3} \mathrm{CH}^{+} \mathrm{CH}_{3}$ First mark Structure Second mark Charge ALLOW Charge shown anywhere on structure or outside of brackets ALLOW (1) for $\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} /$ $\mathrm{CH}_{3} \mathrm{CO}^{+} / \mathrm{CH}_{2} \mathrm{OH}^{+} / \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{CH}_{3} \mathrm{O}^{+}$	Penalise nondisplayed formulae once only in (d)(i) and(d)(ii) Any species with $\mathrm{C}=\mathrm{O}$ scores (0)	(2)

Question Number	Acceptable Answers	Reject	Mark
21(d)(ii)	 bond broken First mark Correct alcohol Second mark Correct bond ALLOW Any type of identification of bond broken TE on correct bond shown on butan-1-ol	Butan-2-ol / 2-methylpropan-2-ol score (0)	(2)

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	ALLOW All dots, all crosses or other symbols The shared pair of electrons anywhere in the overlap region, on or inside the lines Diagram without circles The shared pair shown horizontally The shared pair anywhere between I and Cl Cl and I reversed Diagram with additional straight line as covalent bond between I and Cl e.g. IGNORE Any attempt at ICl_{3} diagram Inner shell electrons, even if incorrect	Ions / double bond	(1)

Question Number	Acceptable Answers	Reject	Mark
*22(a)(ii)	Any two points from:		(2)
	First point		
	One of the (5)p electrons is promoted		
	Second point		
	From a (5)p orbital to an empty (5)d orbital		
	IGNORE		
	Just 'iodine has an empty d orbital'		
	Third point		
	Iodine can form 3 (covalent) bonds / has 3 bonding pairs (of electrons)	Dative covalent bonds / ions for	
	and	Third point only	
	2 lone pairs		
	ALLOW		
	3 bond pairs and 2 lone pairs shown on a dot-and-cross diagram		
	IGNORE		
	Just '3 bond pairs'		
	Fourth point		
	Iodine expands its octet (to 10)		
	OR Iodine has 10/more than 8 electrons (in		
	its outer shell) (1)		
	IGNORE		
	Electron pairs arranged to minimise repulsion / maximum separation for all points		

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	ICl bonds are polar / ICl is polar and because chlorine is more electronegative than iodine / I ${ }^{\delta+}-\mathrm{Cl}^{\delta-}$	Iodine is more electronegative than chlorine	(2)
	ALLOW Iodine and chlorine / they have different electronegativities OR There is a difference in electronegativities for the reason (1)	ICl is (a) polar (molecule) and because it is not symmetrical / is asymmetrical / asymmetric distribution of electron pairs / density the bond polarities / dipole (moments) do not cancel out	IGNORE Just 'because it is T-shaped' IGNORE Explanation of electronegativity

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (b) (i)}$	(From pale) yellow / straw (to) colourless IGNORE ClearAny other colour with yellow	(1)	

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	$\begin{array}{r} \text { Moles } \mathrm{Tl}^{3+} \text { used }=\frac{25.0 \times 0.0464}{1000} \\ =0.00116 / 1.16 \times 10^{-3} \tag{1} \end{array}$ Moles $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ used / moles I^{-}formed $=\frac{23.20 \times 0.100}{1000}$ $\begin{equation} =0.00232 / 2.32 \times 10^{-3} \tag{1} \end{equation*}$ $\left(1 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \equiv 1 / 2 \mathrm{~mol}_{2} \equiv 1 \mathrm{~mol} \mathrm{I}^{-}\right.$ Moles I^{-}reacted with $\mathrm{Tl}^{3+}=2.32 \mathrm{x}$ 10^{-3}) So ratio $\mathrm{I}^{-}: \mathrm{TI}^{3+}=2: 1$ TE on $\mathrm{mol} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ Final oxidation number of thallium is (+)1/I ALLOW TI ${ }^{+}$ ALLOW TE (+)2 / II / Tl^{2+} from a $1: 1$ ratio of I^{-}or $\mathrm{I}_{2}: \mathrm{Tl}^{3+}$ Note M3 and/or M4 may be awarded from an equation e.g. $\mathrm{TI}^{3^{+}}+2 \mathrm{I}^{-} \rightarrow \mathrm{TI}^{+}+\mathrm{I}_{2}$ Scores M3 and M4 Correct oxidation state with no working scores M4 only		(4)

(Total for Question 22 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
23 (a)(i)	Mechanism 1 - no intermediate drawn		(4)
		full charges	
	Dipole on $\mathrm{C}-\mathrm{Br}$	on C and Br	
	Curly arrow from (or close to) lone pair on O of OH^{-}to C (of $\mathrm{C}-\mathrm{Br}$)	$\mathrm{KOH} /$ $\mathrm{OH}^{\delta-}$ as nucleoph	
	Curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to (or just beyond) Br (1)	ile loses M2 only	
	Propan-1-ol and $\mathrm{Br}^{-} / \mathrm{KBr}$ as products Mechanism 2 - $\mathrm{S}_{N} 2$ mechanism		
		full	
	Dipole on $\mathrm{C}-\mathrm{Br}$	on C and	
	Curly arrow from lone pair on OH^{-}to C (of $\mathrm{C}-\mathrm{Br}$) IGNORE curly arrow from $\mathrm{C}-\mathrm{Br}$ to Br	Br KOH / $\mathrm{OH}^{\delta-}$ as nucleoph ile loses	
	Intermediate including dotted bonds and negative charge	M2 only 5 full	
	ALLOW	bonds for M3	
	Negative charge anywhere on intermediate (1)		
	Propan-1-ol and $\mathrm{Br}^{-} / \mathrm{KBr}$ as products (1)		

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Nucleophilic	Homolytic	(2)
	ALLOW Nucleophile		
	Substitution (1)	Any other type of reaction e.g.	
	IGNORE Heterolytic / $\mathrm{S}_{\mathrm{N}} 2 / \mathrm{S}_{\mathrm{N}} 1 /$ unimolecular / bimolecular / hydrolysis	elimination / addition	

Question Number	Acceptable Answers	Reject	Mark
23(b)	Mol 1-bromopropane used $\begin{equation*} =\frac{0.50}{122.9}=0.004068 / 4.068 \times 10^{-3} \tag{1} \end{equation*}$ ALLOW 4.065×10^{-3} if 80 used as A_{r} for Br EITHER $\begin{align*} \text { Mol propene formed } & =\frac{18}{24000} \\ & =0.00075 / 7.5 \times 10^{-4} \tag{1} \end{align*}$ $\text { Percentage yield }=\frac{7.5 \times 10^{-4}}{4.068 \times 10^{-3}} \times 100$ $=18.435 \%$ ALLOW 18.45\% if 80 used as A_{r} for Br Or 18.293 / $18.428 / 18.437$ from correct rounding of mol 1-bromopropane TE on mol 1-bromopropane / propene used provided answer <100\% OR Theoretical volume propene $\begin{aligned} & =4.068 \times 10^{-3} \times 24000 \\ & =97.64 / 97.632 \mathrm{~cm}^{3} \end{aligned}$ ALLOW $97.56 \mathrm{~cm}^{3}$ if 80 used as A_{r} for Br TE on mol 1-bromopropane / propene used provided answer <100\% $\begin{align*} \text { Percentage yield }= & \frac{18}{97.632} \times 100 \tag{1}\\ & =18.435 / 18.437 \% \end{align*}$ ALLOW 18.45\% if 80 used as A_{r} for Br TE on theoretical volume propene IGNORE SF except 1SF Correct answer with no working scores (3) ALLOW Alternative methods		(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c)}$	Fastest: 1-iodopropane Reason - conditional on correct halogenoalkane Answer must refer to the carbon- halogen bond C-I is the weakest (bond) OR C-I has the lowest bond enthalpy OR bond enthalpy C-CI > C-Br > C-I OR Bond enthalpy decreases from C-CI to C-I OR C-Halogen bond strength decreases down the group (of halogens)	1-chloropropane / 1- bromopropane score (0)	(2)
ALLOW C-I bond requires the least amount of energy to break for M2 only			
IGNORE Just 'it has the weakest bond' References to bond length / intermolecular forces / electronegativity			

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	 ALLOW The structure reversed Skeletal / structural formulae	Fl as symbol for fluorine	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (d) (i i)}$	The C-F bond is strong /has a high bond enthalpy OR The C-F bond is stronger than the C-Cl bond)	F^{\bullet} is less stable than Cl•	(1)
	ALLOW The C-F bond is difficult to break / requires a lot of energy to break / is too strong to break UV radiation does not have enough energy to break C-F bonds ALLOW	Reverse argument e.g. C-Cl is weaker (than C-F)	IGNORE Any reference to electronegativity

Question Number	Acceptable Answers	Reject	Mark
23(d)(iii)	$\begin{align*} & \mathrm{Cl}^{\bullet}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}^{\bullet}+\mathrm{O}_{2} \tag{1}\\ & \mathrm{ClO}^{\bullet}+\mathrm{O}_{3} \rightarrow \mathrm{Cl}^{\bullet}+2 \mathrm{O}_{2} \tag{1} \end{align*}$ ALLOW Equations in either order / multiples / - anywhere on the chlorine species IGNORE Curly arrows / state symbols / initiation and termination steps, even if incorrect Equations added together to give overall equation No TE on incorrect species	Missing • once only or - on an oxygen species once only	(2)

Question Number	Acceptable Answers	Reject	Mark
23(d)(iv)	Butane / it is flammable / ignites easily		
	ALLOW It is non-renewable OR It is a greenhouse gas OR It produces greenhouse gases / CO2 and when it burns OR It produces gases when it burns and that cause global warming OR It produces CO during incomplete combustion and this is toxic	(1)	
IGNORE More waste is produced / Difficult to transport / References to cost / Causes pollution / Just 'produces CO / CO2' / Just 'produces greenhouse gases' / Explosive			

(Total for Question 23 = 16 marks) (Total for Section B = 38 marks)

Section C

Question Number	Acceptable Answers	Reject	Mark
24(a)(i)	The oxidation numbers may be written above or below the species in the equation ALLOW Oxidation numbers written as $3-, 1+$, 1- IGNORE Oxidation numbers of other elements, even if incorrect First mark - O.N. of nitrogen Nitrogen changes from -3 (in NH_{3}) to 0 (in N_{2}) Second mark - O.N of chlorine Chlorine changes from +1 (in NaClO) to -1 (in NaCl) Third mark - redox Nitrogen is oxidised (as its oxidation number has increased) and Chlorine has been reduced (as its oxidation number has decreased) ALLOW M3 even if incorrect / missing oxidation numbers in M1 and M2 IGNORE Redox explained in terms of electron gain or loss Reference to oxidising or reducing agent Ammonia is oxidised / sodium chlorate(I) is reduced	Sodium / hydrogen / oxygen is oxidised / reduced for M3 only	(3)

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	TE on moles NH_{3} Volume NaClO needed $=\frac{0.0075 \times 1000}{0.20}$ $=37.5 \mathrm{~cm}^{3}$ OR $\frac{0.0075}{0.20}=0.0375 / 3.75 \times 10^{-2} \mathrm{dm}^{3}$ TE on moles NaClO Value and correct unit required	$\begin{aligned} & \mathrm{cm}^{-3} \\ & \mathrm{dm}^{-3} \end{aligned}$	(3)

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	First mark Equilibrium position shifts to the left / towards the reactants ALLOW Less ammonia / NH_{3} is formed Second mark Because the forward / right reaction is exothermic / releases heat (energy) ALLOW Because the reverse / backward / left reaction is endothermic / absorbs heat (energy) OR Higher temperature favours the endothermic reaction IGNORE Reference to rate of reaction / pressure	Equilibrium shifts to the right for M1 only	(2)

Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	First mark - activation energies Labelled activation energy with catalyst shown on diagram at a lower value than activation energy without a catalyst	Another curve added to the diagram for M1 only	(2)
	If these are not shown: ALLOW Catalyst provides an alternative route with a lower activation energy (1)	IGNORE Just 'catalyst lowers the activation energy' / Just ' catalyst moves Ea to the left' if not shown on diagram	Activation energy with catalyst drawn to the left of the peak
Second mark - energy of molecules A higher fraction of the molecules have energy (equal to or) greater than the activation energy	ALLOW More molecules have energy (equal to or) greater than the activation energy More molecules have enough energy to react More molecules have the activation energy	(1) IGNORE References to collisions Just `so more molecules can react'	
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
24(b)(iii)	 First mark - complete curve (PTO for examples) Curve completed as shown with 'double hump' ALLOW 'single hump' IGNORE Additional curve for uncatalysed reaction Depth of trough, even if below the product level Second mark - products and ΔH Products to the right of reactants and at lower energy level than reactants and downwards arrow labelled ΔH ALLOW Balanced or unbalanced formulae instead of products Products line slightly overlapping reactants line e.g. Reactants Products -92 (kJ mol$\left.{ }^{-1}\right)$ as label for ΔH Labelled double-headed arrow / labelled line that starts and ends at the correct energy levels Third mark - activation energy Arrow labelled E_{a} / activation energy ALLOW Labelled double-headed arrow / labelled line that starts and ends at the correct energy levels / Activation energy labelled on a curve with 'one hump' IGNORE Second E_{a} on a 'double hump' diagram Note: endothermic diagram can score M1 and M3	Labelled catalysed reaction with higher activation energy	(3)
		Arrow in wrong direction	
		Arrow in wrong	
		direction	
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---:
$\mathbf{2 4 (c) (i)}$	$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NCl}_{3}(\mathrm{I})+4 \mathrm{HCl}(\mathrm{g})$		(2)
Balanced equation	(1)		
	ALLOW Multiples State symbols Conditional on correct species or 'near miss' e.g use of $\mathrm{NH}_{3} \mathrm{Cl}$		
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
24(c)(ii)	First mark -shape (trigonal) pyramid(al) ALLOW 3-dimensional shape drawn with or without lone pair e.g. IGNORE Bond angle, even if incorrect Second mark - electron pairs 4 pairs of electrons / 3 bond pairs and 1 lone pair / 4 regions of electron density ALLOW 1 lone pair and 3 (covalent) bonds/ Diagram showing electron pairs / Ione pair and 3 bond pairs Third mark - repulsion / separation Electron pairs arranged to minimise repulsion ALLOW Electron pairs arranged for maximum separation IGNORE Lone pairs repel more than bond pairs	Any mention of ions loses M2 and M3. Just 'bonds repel'	(3)
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
24(c)(iii)	IGNORE any reference to permanent dipole forces In M2 and M4, allow comparison of energy needed to break a bond as equivalent to strength of bond First mark - Nitrogen trichloride and ethanol / both have London forces / dispersion forces / van der Waals' forces / forces between an instantaneous dipole and an induced dipole Second mark The London forces / dispersion forces / van der Waals' forces / forces between an instantaneous dipole and an induced dipole are stronger in nitrogen trichloride and because it has 58 electrons whereas ethanol has 26 ALLOW Nitrogen trichloride has more electrons (than ethanol) for the second part of M2 Third mark Ethanol (also) has hydrogen bonding Fourth mark The total intermolecular forces in nitrogen trichloride and ethanol must be similar OR Similar amount of heat / energy needed to break the intermolecular forces OR Hydrogen bonds in ethanol are stronger than / similar strength to London forces in nitrogen trichloride (so compensate for the weaker London forces in ethanol) ALLOW Hydrogen bonds are stronger than / have similar strength to London forces OR Hydrogen bonding is the strongest intermolecular force	Any mention of nitrogen forming hydrogen bonds or breaking covalent bonds or ions loses M1 only Incorrect number(s) of electrons Ethanol forms hydrogen bonds with water	(4)
(Total for Question 24 = 22 marks)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

