Pearson

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Level In Chemistry (WCH02) Paper 01 Applications Of Core Principles Of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WCH02_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	The only correct answer is D	(1)
	A is not correct because this is linear \mathbf{B} is not correct because this is trigonal planar \mathbf{C} is not correct because this is tetrahedral	

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Mark } \\ \hline \mathbf{2} & \text { The only correct answer is B } & \text { (1) } \\ & \mathbf{A} \text { is not correct because } 90^{\circ} \text { is not in methanol } \\ & \mathbf{C} \text { is not correct because } 180^{\circ} \text { is not in methanol } & \\ & \mathbf{D} \text { is not correct because Neither bond angle in methanol }\end{array}\right]$

Question Number	Correct Answer	Mark
$\mathbf{3 (a)}$	The only correct answer is C A is not correct because all have boiling temperature below water	(1)
B is not correct because all have boiling temperature below water \mathbf{D} is not correct because all have boiling temperature below water		

Question Number	Correct Answer	Mark
$\mathbf{3 (b)}$	The only correct answer is D A is not correct because all have weaker hydrogen bonds than hydrogen fluoride	(1)
B is not correct because all have weaker hydrogen bonds than hydrogen fluoride	C is not correct because all have weaker hydrogen bonds than hydrogen fluoride	

Question Number	Correct Answer	Mark
$\mathbf{4}$	The only correct answer is D	(1)
	A is not correct because both decrease B is not correct because ionization energy decreases C is not correct because solubility decreases	

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Mark } \\ \hline \mathbf{5} & \text { The only correct answer is D } & \text { (1) } \\ & \text { A is not correct because only Mg has correct colour } & \\ & \mathbf{B} \text { is not correct because no correct colours } \\ \mathbf{C} \text { is not correct because Mg and Ba have incorrect colour }\end{array}\right]$

Question Number	Correct Answer	Mark
$\mathbf{6}$	The only correct answer is B A is not correct because are incorrect because all give nitrogen dioxide	(1)
C is not correct because incorrect because all give nitrogen dioxide \mathbf{D} is not correct because incorrect because all give nitrogen dioxide		

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is B A is not correct because chlorine does not give a brown solution in hexane	(1)
C is not correct because iodine is a grey/silver solid D is not correct because it does not give a brown solution in hexane		

Question Number	Correct Answer	Mark
$\mathbf{8}$	The only correct answer is C	(1)
	A is not correct because give other products	
B is not correct because give other products		
D is not correct because give other products		

Question Number	Correct Answer	Mark
$\mathbf{9}$	The only correct answer is C	(1)
	A is not correct because hydrogen sulfide is not formed	
\mathbf{B} is not correct because sulfur is not formed		
\mathbf{D} is not correct because this is not an reduction		

Question Number	Correct Answer	Mark		
$\mathbf{1 0}$	The only correct answer is D A is not correct because all have lower mean concentrations	(1)		
\mathbf{B} is not correct because all have lower mean				
concentrations				
\mathbf{C} is not correct because all have lower mean				
concentrations			\quad	
:---				

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	The only correct answer is A \mathbf{B} is not correct because ion-ion does not make a solution	(1)
C is not correct because there is only a dipole in water D is not correct because there is only hydrogen bonding in water		

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	The only correct answer is A	(1)
	B is not correct because stream is diverted C is not correct because it is insoluble D is is not correct because both statements are incorrect	

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	$\mathbf{1 3 .}$ The only correct answer is C	(1)
	A is not correct because they are too few products	
	B is not correct because they are too few products	
D is not correct because this is too many products		

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	The only correct answer is A B is not correct because 2-methylpropan-2-ol does not give this peak C is not correct because 2-methylpropan-2-ol does not give this peak \mathbf{D} is not correct because neither give this peak	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	The only correct answer is C	(1)
	A is not correct because there is no OH absorption	
D is not correct because there is no OH absorption aldehyde C-H absorptions		

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	The only correct answer is B A is not correct because secondary alcohols oxidize to ketones	(1)
C is not correct because secondary alcohols oxidize to ketones	D is not correct because secondary alcohols oxidize to ketones	

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	The only correct answer is C	(1)
	A is not correct because both are oxidized \mathbf{B} is not correct because both are oxidized D is not correct because ketones do not react with sodium	

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	The only correct answer is D A is not correct because it has carbon footprints in production or delivery	(1)
B is not correct because it has carbon footprints in production or delivery	C is not correct because it has carbon footprints in production or delivery	

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	The only correct answer is A	(1)
	B is not correct because it then goes paler \mathbf{C} is not correct because it initially goes darker D is not correct because it is the wrong way round	

Section B

Question Number	Acceptable Answers	Reject	Mark
*20(a)(i)	M1 These are all OK:		(4)
		Use of Cl or Br loses M1 only	
	$I^{\prime / P} I_{I}^{P} I_{I}^{\bar{P}} I_{I}$		
	These are not OK, but they can score If (trigonal) pyramidal or tetrahedral is mentioned in text:		
	$I-P-I \quad \begin{aligned} & I \\ & 1 \\ & I \end{aligned}$		
	ALLOW A diagram without lone pair (1)		
	M2 Bond angle in the range 106-108 ${ }^{\circ}$ ALLOW (Actual value is) 102°		
	M3 Minimum repulsion between electron pairs (and lone pair of electrons)		
	ALLOW		
	maximum separation between electron pairs		
	M4 Non-bonding/lone pairs (of electrons) repel more than bonding pairs		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i i)}$	$3 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{PI}_{3} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}+\mathrm{H}_{3} \mathrm{PO}_{3}$		(1)
	ALLOW $\mathrm{P}(\mathrm{OH})_{3}$ for $\mathrm{H}_{3} \mathrm{PO}_{3}$ IGNORE state symbols, even if incorrect		

Question Number	Correct Answer	Reject	Mark
20(a)(iii)	COMMENT		(2)
	First check for four bonds.		
Many will give two 2-iodobutane structures			

| Question
 Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 0 (b) (i)}$ | (Attacking reagent) water/ $\mathrm{H}_{2} \mathrm{O}$
 IGNORE
 Hydroxide/OH | | |
| (Type and mechanism) Nucleophilic substitution
 ALLOW
 these words in any order and anywhere
 IGNORE
 SN1 and SN2 | (1) | | (2) |

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 0 (b) (i i)}$	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgI}(\mathrm{s})$	Any other additional ions	(1)
	ALLOW		
"alc" or "ethanol" for "aq"			
IGNORE			
Charges on ions in product.			

Question Number	Correct Answer	Reject	Mark
20(c)	(1-)aminobutane/(1-)butylamine/ $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$ ALLOW 1- anywhere OR Butan(e)(-1-)amine OR Multisubstituted amines, e.g. $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{NH}$ Ammonium iodide/ $\mathrm{NH}_{4} \mathrm{I}$ IGNORE Hydrogen iodide/HI If both names and formulae are given, both must be correct.		(2)

Question Number	Correct Answer	Reject	Mark
21(a)	M1 Correct directions The equilibrium will move to/favours the right/forward when the temperature is increased and will be unchanged when the pressure is increased M2 Temperature: because the reaction is endothermic OR ΔH is positive OR Reverse reaction is exothermic $/ \Delta H$ is negative M3 Pressure: there are the same number of (gaseous) molecules/moles/particles on each side of the equation Mark independently	...volumes ...alone	(3)
Question Number	Correct Answer	Reject	Mark
21(b)(i)	Nitrogen from -3 to +2 Oxygen from 0 to -2 Elements can be named in either order but numbers must be correct for the element ALLOW signs on the right side		(2)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 1 (b) (i i)}$	Increasing temperature increases the proportion/number of molecules/particles (colliding) with energy greater than the activation energy/Ea. OR Area under the Maxwell Boltzmann graph to the right of activation energy/E \mathbf{a} increases IGNORE High temperature results in more (effective) collisions	(1)	

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 1 (b) (i i i)}$	A catalyst reduces the activation energy (so a greater proportion of molecules have sufficient energy to react.) ALLOW In the graph the activation energy moves to the left IGNORE reference to energy increasing	(1)	
	More collisions between particles / frequency of collisions increases		

Question Number	Correct Answer	Reject	Mark
21(c)(i)	M1 A nitrogen monoxide molecule changes its dipole moment as it vibrates / vibrating dipole ALLOW NO is polar/contains polar bonds Then any two of M2, M3 or M4 M2 NO allows through higher energy/frequency OR longer wavelength, radiation (from the sun) OR M3 NO absorbs (reflected) (longer wavelength/higher frequency) IR OR M4 NO re-emits/reflects IR/heat/radiation back to earth OR traps IR/heat/radiation IGNORE NO reacts with the ozone layer or any reference to the ozone layer	...IR from sun loses M3 only	(3)

Question	Correct Answer	Reject	Mark
21(c)(ii)	$\begin{align*} & \mathrm{NO} \cdot+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2} \cdot+\mathrm{O}_{2} \tag{1}\\ & \mathrm{NO}_{2} \cdot+\mathrm{O}_{3} \rightarrow \mathrm{NO}^{\cdot}+2 \mathrm{O}_{2} \tag{1} \end{align*}$ Omitting all dots 1 max of first two marks BUT ALLOW if one dot shown on both NO and NO_{2} in either equation $\begin{equation*} 2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2} \tag{1} \end{equation*}$ IGNORE state symbols, even if incorrect		(3)

(Total for Question 21 = 13 marks)

Question Number	Correct Answer	Reject	Mark		
$\mathbf{2 2 (a) (i)}$	$3 \mathrm{I}_{2}+6 \mathrm{KOH} \rightarrow \mathrm{KIO}_{3}+5 \mathrm{KI}+3 \mathrm{H}_{2} \mathrm{O}$ Balancing numbers as shown, 3 and 5 for iodine Balancing for oxygen and hydrogen, 6KOH and $3 \mathrm{H}_{2} \mathrm{O}$ ALLOW		(2)		
multiples					
IGNORE					
state symbols, even if incorrect				\quad	
:---					

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 2 (a) (i i)}$	Disproportionation (reaction)	Disproportion(al) alone	$\mathbf{(1)}$
	IGNORE		
redox			

Question Number	Correct Answer	Reject	Mark
22(b)	The mixture turns (pale) yellow/brown	Fizzing	(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 2 (c)}$	(Both salts are soluble in hot water.) Potassium iodate(V) is (much) less soluble (than potassium iodide in cold water). ALLOW Potassium iodate is not soluble (in cold water)	(1)	
OR			
Potassium iodide is (more) soluble			
OR			
Solubility difference between potassium iodate and potassium iodide			

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 2 (d) (i)}$	Second mark depends on the first mark (Freshly prepared) starch (solution) (1) Added when (solution is) pale yellow/straw coloured OR	(2)	
	Added when solution is pale ALLOW Added just before/ near the end-point/ end of reaction/ titration/ experiment	At the end-point etc	(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 2 (d) (i i)}$	blue/black to colourless	...to clear	(1)

ALLOW TE from d (iii) to (iv), to (v), to (vi)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 2 (d) (i i i)}$	$\frac{27.45 \times 0.010}{1000}=2.745 \times 10^{-4}(\mathrm{~mol})$		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 2 (d) (i v) ~}$	$\frac{2.745 \times 10^{-4}}{6}=4.575 \times 10^{-5}$		
COMMENT Multiplying by 6 gives 1.647×10^{-3}	(1)		

Question Number	Correct Answer	Reject	Mark
22(d) (v)	Correct answer (with or without working) (3) Molar mass $\mathrm{KIO}_{3}=214.0 \mathrm{~g} \mathrm{~mol}^{-1}$ $4.575 \times 10^{-5} \times \underset{(1)}{10} \times 214=\underset{(1)}{0.0979(05)(\mathrm{g}) / 97.9 \mathrm{mg}}$ IGNORE SF except 1SF TE from $x 6$ in (iv) gives 3.5246 (g) Internal TE if oxygen omitted from molar mass giving 166, gives 0.075945 , scores 2 marks AND Failure to multiply by 10 gives $0.00979(05)$		(3)

Question Number	Correct Answer	Reject	Mark
22(d)(vi)	$\begin{equation*} \frac{0.0979(05) \times 100}{0.10}=97.905=98 \% \tag{1} \end{equation*}$ Expression $\begin{equation*} 2 \text { SF } \tag{1} \end{equation*}$ Example TE 166 gives 76\% Failure to multiply by 10 gives 9.8% If expression is reversed or incorrect in any other way, give 1 max for their correct answer to 2 SF . Comment Percentages greater than 100 are allowed for 2 marks		(2)

Question Number	Correct Answer	Reject	Mark
22(d)(vii)	Potassium iodate may contain potassium iodide/ water	Potassium hydroxide	(1)
	ALLOW		
	Absorption of water / hydrated (crystals)		
	Iodine IGNORE Impurities/transfer errors		

(Total for Question 22 = 16 marks)
(Total for Section $B=41$ marks)

Question Number	Correct Answer	Reject	Mark
*23(a)(i)	Mark independently		(6)
	M1		
	London/dispersion/van der Waals forces		
	OR		
	Instantaneous/temporary dipole induced dipole forces		
	M2 all atoms	Between	
		bonds	
	C and H atoms / C and C atoms / H and H atoms OR		
	non-polar parts of the molecule (1)		
	M3		
	Permanent dipole (permanent) dipole forces		
	M4	$\mathrm{C}-\mathrm{H}$ is polar	
	Between $\mathrm{C}^{(\delta+)}$ and $\mathrm{O}^{(\delta-)} / \mathrm{H}^{(\delta+)}$ and $\mathrm{O}^{(\delta-)}$ (atoms)		
	OR		
	Between C-O bonds		
	OR		
	Between O-H bonds		
	CO bond / C-O is polar		
	OR		
	OH bond / O-H is polar		
	M5		
	Hydrogen bonds		
	M6		
	Between hydrogen of $\mathrm{OH} / \mathrm{H}^{\delta+}$ and another oxygen		
	OR		
	Between OH groups OR		
	Because hydrogen is bonded to very electronegative element / is bonded to oxygen	Between $\begin{equation*} \mathrm{OH} \tag{1} \end{equation*}$	
		molecules/a toms	
	If confusion between intermolecular and intramolecular bonds award 5 max, so two points 1 mark, three points two marks etc.		

Question Number	Correct Answer	Reject	Mark
23(a)(ii)	Any two of the following M1 Glucose/it forms hydrogen bonds with water (molecules) M2 The large number of $\mathrm{O}-\mathrm{H}$ groups / hydroxy(I) groups OR large number of hydrogen bonds (with water) ALLOW several/five/any number greater than five /many for 'large' number M3 Energy arguments like: Energy released by forming new hydrogen bonds makes up for energy used in breaking hydrogen bonds in water and/or glucose IGNORE glucose forms London forces with water	...hydroxide Glucose is non-polar	(2)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 3 (b)}$	$\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow\right) 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$		(1)
	ALLOW		
	Multiples		
	OR		
	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for ethanol		
IGNORE state symbols, even if incorrect			

Question Number	Correct Answer	Reject	Mark
23(c)	Any two from:		(2)
	Taxation of alcohol is acceptable to the public (as they can choose whether or not to drink alcohol)		
	(Expense may) reduce alcohol abuse (1)		
	(Expense may) reduce alcohol use/consumption		
	Raises money for the government (1)		
	Tax can be used to pay for treatment for alcohol related diseases		
	Alcohol is harmful/causes disease/disorders (1)		
	Reduces road accidents (1)		
	Detailed argument leading to less global warming		

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 3 (d) (i)}$	$\frac{100 \times 100}{57.15}=174.9781=175^{(0)}$		$\mathbf{(1)}$
	Ignore SF except 1 or 2		

Question Number	Correct Answer	Reject	Mark
23(d)(ii)	Correct answer with or without working 9.8(02) Ignore SF unless 1SF, Ignore units unless incorrect 3 marks Otherwise any two in any order from: M1 Mass of ethanol $=57.15 \times 0.789(=45.09)(\mathrm{g})$ M2 Number of moles of ethanol $=\frac{57.15 \times 0.789}{46}$ $=(0.98025)$ ALLOW any number divided by 46 M3 Concentration of ethanol $=\frac{57.15 \times 0.789 \times 1000}{46 \times 100}$ $=9.8(025)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ ALLOW Multiplication of any number by 10		(3)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 3 (e)}$	Potassium nitrate is (very) soluble in water/dissolves in water.	(1)	
	OR The potassium nitrate does not dissolve if there is a low enough concentration of water that the powder still ignites.	OR The alcohol burns giving out sufficient heat to drive of a limited amount of water.	ALLOW Any reference to the need to keep gunpowder dry

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 3 (f)}$	$2 \mathrm{KNO}_{3}(\mathrm{~s})+\mathrm{S}(\mathrm{s})+3 \mathrm{C}(\mathrm{s}) \rightarrow \mathrm{K}_{2} \mathrm{~S}+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{CO}_{2}(\mathrm{~g})$ ALLOW Multiples	(1)	
Question Number Correct Answer Reject Mark $\mathbf{2 3 (g)}$ $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}($ aq) ALLOW No states, or any states except solid Conditions (which may be over the arrow in the equation) - any one from: High temperature / any specified temperature above $25^{\circ} \mathrm{C} /$ heat High pressure / pressure greater than 1 atmosphere Catalyst / a specified catalytic substance eg Pt / Ni / sulfuric acid (phosphoric acid is used normally) Mark independently Reflux	(2)		

(Total for Section C = 19 marks)
(Total for Paper = 80 marks)

