Pearson

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Level In Chemistry (WCH04) Paper 01 General Principles of Chemistry I - Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WCH04_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	The only correct answer is D	(1)
	\boldsymbol{A} is not correct because this is not the half life	
\boldsymbol{B} is not correct because this is not the half life		
\boldsymbol{C} is not correct because this is a limiting case of the half life		

Question Number	Correct Answer	Mark		
$\mathbf{2}$	The only correct answer is C too small to affect the rate as much	(1)		
\boldsymbol{B} is not correct because the reaction is already in strong acid				
and the production of CO2 will not affect pH much (if at all)			\quad	\boldsymbol{D} is not correct because although the statement is correct it
:---				
has no bearing on the question	\quad			

Question Number	Correct Answer	Mark
$\mathbf{3 (a)}$	The only correct answer is B A is not correct because P is the graph for a first order reaction	(1)
	C is not correct because R is the graph for no reaction \boldsymbol{D} is not correct because S is the graph of reactant concentration against time for a first order reaction	

Question Number	Correct Answer	Mark
3(b)	The only correct answer is B A is not correct because P is the graph of product concentration against time for a first order reaction	(1)
	\boldsymbol{C} is not correct because this is a graph of rate against time for a zero order reaction	\boldsymbol{D} is not correct because S is the graph of reactant concentration against time for a first order reaction

Question Number	Correct Answer	Mark
$\mathbf{4}$	The only correct answer is A \boldsymbol{B} is not correct because this is generally true but not a reliable explanation	(1)
\boldsymbol{C} is not correct because this is probably true but not a reliable explanation	\boldsymbol{D} is not correct because this is true but does not explain the change with temperature	

Question Number	Correct Answer	Mark
$\mathbf{5}$	The only correct answer is A \boldsymbol{B} is not correct because entropy is expected to increase with the increase in the number of gaseous particles	(1)
\boldsymbol{C} is not correct because entropy is expected to increase with the increase in the number of gaseous particles	\boldsymbol{D} is not correct because entropy is expected to increase with the increase in the number of gaseous particles	

Question Number	Correct Answer	Mark
$\mathbf{6}$	The only correct answer is C	
\boldsymbol{A} is not correct because this is true for enthalpy of formation		
but not molar entropy		
\boldsymbol{B} is not correct because this is incorrect		
\boldsymbol{D} is not correct because this is incorrect		

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is A	(1)
	\boldsymbol{B} is not correct because this is K_{c} for the reverse reaction C is not correct because the expression includes substances in the solid state	\boldsymbol{D} is not correct because the expression includes substances in the solid state

Question Number	Correct Answer	Mark
$\mathbf{8}$	The only correct answer is A B is not correct because yield decreases as pressure increases \boldsymbol{C} is not correct because yield increases as temperature increases \boldsymbol{D} is not correct because yield increases as pressure decreases and temperature increases	(1)

Question Number	Correct Answer	Mark
$\mathbf{9}$	The only correct answer is C A is not correct because K_{p} expression depends on the chemical equation	(1)
B is not correct because relationship is given the wrong way round \boldsymbol{D} is not correct because a power of 2 should be used, not a factor of 2		

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	The only correct answer is C	(1)
	\boldsymbol{A} is not correct because K_{p} unaffected by pressure	
B is not correct because K_{p} unaffected by pressure		
\mathbf{D} is not correct because when pressure increases, a gaseous		
equilibrium shifts towards side with fewer moles		

\hline\end{array}\right.\)

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	The only correct answer is D	(1)
	A is not correct because bases are the wrong way round \boldsymbol{B} is not correct because ethanoic acid is not the acid and HSO_{4}^{-}is the conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$	
\boldsymbol{C} is not correct ethanoic acid is not the acid		

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	The only correct answer is C \boldsymbol{A} is not correct because litmus is unsuitable for titrations and is a mid-range indicator	(1)
B is not correct because methyl orange is used for strong acid weak base titrations	\boldsymbol{D} is not correct because UI is never used as a titration indicator	

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	The only correct answer is B A is not correct because this is from $10^{-4.76}$ \boldsymbol{C} is not correct because this is calculated using the standard approximations and ignoring the $\left[\mathrm{H}^{+}\right]$due to water	(1)
	\boldsymbol{D} is not correct because this is calculated using the standard approximations and ignoring the $\left[\mathrm{H}^{+}\right]$and omitted to square root $\left[\mathrm{H}^{+}\right]$	

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	The only correct answer is B A is not correct because the compound has a geometric isomer	(1)
C is not correct because the compound does not have an asymmetric carbon	\boldsymbol{D} is not correct because the compound does not have an asymmetric carbon	

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	The only correct answer is C A is not correct because aldehydes and ketones form hydrogen bonds with water	(1)
	B is not correct because aldehydes and ketones form hydrogen bonds with water but not in the liquid state	
D is not correct because aldehydes and ketones do not form hydrogen bonds in the liquid state		

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	The only correct answer is D A is not correct because ketones do not react with Tollens' reagent	(1)
	\boldsymbol{B} is not correct because aldehydes and ketones react with $2,4-$ dinitrophenylhydrazine	\boldsymbol{C} is not correct because ketones do not react with Tollens' reagent

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	The only correct answer is D A is not correct because butanoic acid is not oxidised by acidified dichromate(VI)	(1)
B is not correct because butanoic acid reacts with PCl $_{5}$ but chlorobutane is not the product	C is not correct because the acid product when butyl methanoate is hydrolysed is methanoic acid	

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	The only correct answer is D	(1)
	\boldsymbol{A} is not correct because they are all isomeric	
\boldsymbol{B} is not correct because they are all isomeric		
\boldsymbol{C} is not correct because they are all isomeric		

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	The only correct answer is A	(1)
\boldsymbol{B} is not correct because the central linkage is wrong and not correct because this is derived from butanedioic acid \boldsymbol{D} is not correct because derived from two different monomers		

Section B

Question Number	Acceptable Answers	Reject	Mark
20(a)(i)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ ALLOW \rightarrow in place of \rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i i)}$	$K_{\mathrm{a}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}$ OR $\mathrm{H}_{3} \mathrm{O}^{+}$for H^{+}	Other types of bracket	(1)
	ALLOW $K_{\mathrm{c}}=$	Omission of $K_{\mathrm{a}}=$	

Question Number	Acceptable Answers	Reject	Mark
20(a)(iii)	Concentration of a saturated solution of benzenecarboxylic acid at $25^{\circ} \mathrm{C}$ $=3.44 / 122.1=0.028174\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ALLOW $\begin{align*} & 3.44 / 122=0.028197\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1}\\ & \begin{aligned} \mathrm{K}_{\mathrm{a}}= & 10^{-4.2}=6.3096 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned} \tag{1}\\ & {\left[\begin{array}{rl} {\left[\mathrm{H}^{+}\right]} & =\sqrt{ }\left(6.3096 \times 10^{-5} \times 0.028174\right) \\ & =1.3333 \times 10^{-3} \\ \mathrm{pH} & =-\log _{10}\left(1.3333 \times 10^{-3}\right) \\ & =2.87508 / 2.88 / 2.9 \end{array}\right.} \tag{1} \end{align*}$ TE at each stage of the calculation Do not penalise premature correct rounding e.g. 0.0282 and 6.31×10^{-5} gives $\mathrm{pH}=2.8749=2.87$ If 3.44 is used for the concentration in ($\mathrm{mol} \mathrm{dm}^{-3}$) $\mathrm{pH}=1.83172$ scores (3) No TE on the use of an incorrect expression from (a)(i): max (3) (MP1, MP2, MP4) IGNORE SF except 1 SF Correct answer with no working scores 4		(4)

Question Number	Acceptable Answers	Reject	Mark
20(a)(iv)	IGNORE explanations		(2)
	ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$throughout		
	First mark:		
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} /$ benzenecarboxylic acid ionisation negligible		
	ALLOW		
	Acid for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$		
	Slight / partial / incomplete / does not dissociate for negligible		
	OR		
	$\begin{align*} & {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]_{\text {equilibrium }}=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]_{\text {initial }} /} \\ & 0.0028174\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$		
	Second mark:		
	([H^{+}] due to) ionisation of water negligible		
	OR		
	$\left[\mathrm{H}^{+}\right.$] only due to ionisation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} /$		
	(benzenecarboxylic) acid OR		
	$\begin{equation*} \left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right] \tag{1} \end{equation*}$		
	IGNORE references to temperature and to HA and A^{-}		
	Penalise omission of [] in discussion once only		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i)}$	Value in the range 7.3-8.5 (1)		(2)
	This solution contains a (dilute) solution of the salt of a weak acid and a strong base / alkali (so has a slightly alkaline pH) OR Reaction is between a weak acid and a strong base / alkali		

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	$\begin{align*} & \text { Mol acid }=25.0 \times 0.0020 \times 10^{-3}=5 \times 10^{-5} \\ & \text { Mol } \mathrm{NaOH}=\mathrm{V} \times 0.0025 \times 10^{-3} \tag{1} \end{align*}$ Neutralisation so these are equal and $\begin{align*} V & =25.0 \times 0.0020 / 0.0025 \\ & =20 \mathrm{~cm}^{3} / 0.020 \mathrm{dm}^{3} \tag{1} \end{align*}$ IGNORE SF Correct answer with no working scores (2)	no / incorrect units	(2)

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 0 (b) (i i i) ~}$ | pH of $0.0025 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
 $\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=2.6$
 $\mathrm{pH}=\mathrm{pK} K_{\mathrm{w}}-\mathrm{pOH}=14-2.6=11.4$ (1)
 OR
 $K_{w}=1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=0.0025\left[\mathrm{H}^{+}\right]$ (1)
 $\left[\mathrm{H}^{+}\right]=1 \times 10^{-14} / 0.0025=4 \times 10^{-12}$
 $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=11.39794=11.4$ | (2) | |
| | 11.4 with no working scores (2)
 OR
 Calculation based on specified excess volume
 of sodium hydroxide
 IGNORE SF except 1 SF | 11.39 as final
 answer | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (c) (i)}$	Standalone marks		(2)
	A buffer resists change in pH OR Maintains a fairly / nearly constant pH (1) on the addition of small amounts of acid / H^{+} and of alkali / base $/ \mathrm{OH}^{-}$ "prevents change in $\mathrm{pH"}^{\prime \prime}$ Just 'constant'		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (c) (i i)}$	In this part of the graph, the pH changes slowly ALLOW This part of the graph is (fairly) flat / horizontal / (nearly) zero gradient (1)	(2)	
	So the addition (or removal) of alkali / acid has relatively little effect on the pH of the solution (1)	no change in pH	
IGNORE References to half equivalence point			

Question Number	Acceptable Answers	Reject	Mark
20(c)(iii)	If answer based on generalised buffer (HA and A^{-}) score MP2 and 1 mark for MP3 and MP4 (max 2) MP1 $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} /$ benzenecarboxylic acid / benzoic acid and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$/ benzenecarboxylate / benzoate (ion) / $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)} /$sodium benzenecarboxylate MP2 $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$are present in high concentration / large amount / form a large reservoir and so their values / the concentration ratio do(es) not change significantly (when small amounts of acid or alkali are added) ALLOW Ratio remains constant MP3 When acid is added the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$is protonated /reacts, removing the H^{+}ion from the solution / forming $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ MP4 When alkali is added the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is deprotonated / reacts, removing the OH^{-}ion from the solution / forming $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$/ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{(-)} \mathrm{Na}^{(+)}$ OR OH^{-}reacts with H^{+}and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ dissociates to replace the H^{+} For MP3 and MP4: Just "acid reacts with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$and alkali reacts with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}^{\prime \prime}$ scores (1)		(4)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (d)}$	Enzymes are denatured / damaged at high and low pH ALLOW Enzymes do not work at the incorrect pH / only work at correct/optimum pH OR pH affects enzyme activity OR Cells are damaged by high / low pH		(1)

(Total for Question 20 = 23 marks)

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 1 (a) (i)}$ | Method 1
 P = (aqueous) sodium hydroxide (1)
 Q = Iodine (in potassium iodide solution) (1) | | (2) |
| Method 2
 P = (aqueous) sodium chlorate(I)
 and
 Q = (aqueous) potassium iodide (1) | | | |
| ALLOW
 Reagents labelled the other way round | (1) | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i i i) ~}$	Triiodomethane		(1)
	ALLOW	$1,1,1$-iodomethane	
	$1,1,1$-triiodomethane	$1,2,3-$ triiodomethane	
	Iodoform		
	Triodomethane		
	IGNORE	CHI_{3}	

Question Number	Acceptable Answers	Reject	Mark		
21(a)(iv)	These are stand alone marks		(2)		
	Lithium tetrahydridoaluminate((III)) / (1) Lithium aluminium hydride / LiAlH If the oxidation number is given it must be correct ether / ethoxyethane / diethyl ether and (1) essential condition: dry IGNORE Just `ether' Addition of acid				
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---		
$\mathbf{2 1 (a) (v)}$	Propanal / product is distilled directly/immediately (out of the reaction mixture)	Reflux			
ALLOW Just 'distil' Fractional distillation IGNORE Heat / boil Refs to minimising amount of oxidising agent	(1)				
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---:		
$\mathbf{2 1 (a) (v i)}$	Phosphorus(V) chloride / phosphorus pentachloride / PCl_{5}	OR Phosphorus(III) chloride / phosphorus trichloride / PCl			
	OR thionyl chloride / SOCl_{2}				
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---:		
$\mathbf{2 1 (a) (v i i) ~}$	propanamide	N-propanamide ethylamide	(1)		
	ALLOW propaneamide propionamide IGNORE $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$				
Question Number	Acceptable Answers	Reject	Mark		
:---:	:---:	:---:	:---:		
21(b)(i)	$\begin{align*} & \text { (} m / e=43 \text { is due to) } \mathrm{CH}_{3} \mathrm{CO}^{+} \\ & \text {IGNORE } \\ & \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}^{+} \tag{1}\\ & \\ & (m / e=29 \text { is due to }) \mathrm{CHO}^{+} / \mathrm{C}_{2} \mathrm{H}_{5}^{+} / \\ & \mathrm{CH}_{3} \mathrm{CH}_{2}+ \\ & \mathrm{ALLOW}^{\mathrm{COH}^{+} / \mathrm{HCO}^{+}} \tag{1} \end{align*}$ Penalise omission of ' + ' charge or use of '-' charge once	$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{7}^{+} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{+} \\ & \mathrm{CH}_{2} \mathrm{COH}^{+} \\ & \mathrm{CH}_{2} \mathrm{CHO}^{+} \end{aligned}$	(2)		
Question Number	Acceptable Answers	Reject	Mark		
:---:	:---:	:---:	:---:		
21(b)(ii)	Propanal will have a ($\mathrm{C}=\mathrm{O}$ stretching peak / absorption) in the range $1740-1720\left(\mathrm{~cm}^{-1}\right)$ OR Propanal will have a (C-H stretching peak / absorption) in the range 2900 to 2820 / 2775 to $2700\left(\mathrm{~cm}^{-1}\right)$ Butanone will have a ($\mathrm{C}=\mathrm{O}$ stretching peak / absorption) in the range 1700-1680 (cm^{-1}) ALLOW 1720-1710 (cm^{-1}) ALLOW Butanone will not have a ($\mathrm{C}-\mathrm{H}$ stretching peak/absorption) in the range 2900 to 2820 / 2775 to $2700\left(\mathrm{~cm}^{-1}\right)$ and because butanone does not have an aldehyde C-H If aldehydes and ketones used rather than specific molecules max (1) If propanal and butanone wavenumber are transposed max (1) Penalise once only the use of a specific wavenumber rather than a range		(2)		
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---:		
$\mathbf{2 1 (c) (i)}$	$\left(K_{\mathrm{c}}=\right)\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}(\mathrm{I})\right]\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right]$ $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{I})\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})\right]$	Other brackets	(1)		
	IGNORE state symbols even if incorrect				
Question Number	Acceptable Answers	Reject	Mark		
:---	:---	:---	:---:		
$\mathbf{2 1 (c) (i i) ~}$	Catalyst	Just 'shifts equilibrium to the right'	(1)		
	IGNORE Reference to shifting the equilibrium to the right by absorbing water "speeds up the reaction" by itself				
Question Number	Acceptable Answers	Reject	Mark		
:---:	:---:	:---:	:---:		
21(c)(iii)	Mark this part independently of the expression given in (c)(i).		(5)		
	Data (see table below) NOTE Mr values may be given as 46.1 and 74.1				
	(Let volume of the mixture $=\mathrm{V} \mathrm{dm}{ }^{3}$) $K_{c}=\frac{(0.11 / V)(2.11 / V)}{(0.14 / V)(0.39 / V)}$ OR an explanation of why moles can be used rather than concentration	V omitted			
	$\begin{equation*} =4.25092=4.25 \tag{1} \end{equation*}$	Units given not consistent with K			
	Correct answer with no use of V (4)				
	IGNORE SF except 1 SF				
	if K is inverted, max (4)				
	if [$\mathrm{H}_{2} \mathrm{O}$] omitted, max (3) for				
	M2, M3 and M5 given as $2.015 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ OR $2.015 \mathrm{~V} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$				
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}$	$\mathrm{H}_{2} \mathrm{O}$	Mark
:---:	:---:	:---:	:---:	:---:	:---:
Initial mass $/ \mathrm{g}$	18.5	23	0	36	-
Initial mol	$18.5 / 74=$ 0.25	$23 / 46=$ 0.50	0	$36 / 18=2$	(1)
Equil $^{\mathrm{m}} \mathrm{mol}$	$0.25-0.11$ $=0.14$	$0.50-0.11$ $=0.39$	0.11	2.11	$(2)^{*}$
* First mark for calculating 0.11 \& second mark for the rest
| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 21(d)(i) | (Reaction involves / requires)
 ultraviolet / UV radiation / UV | | (1) |
| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 (d) (i i)}$ | OR
 Structural formula
 OR
 Combination of displayed and structural
 formulae
 OR
 COOH / CO 2 H
 C-H shown as CH | | Omission of unpaired
 electron
 unpaired electron on
 the wrong atom
 Any charge on the
 species |
| (1) | | | |

(Total for Question 21 = 26 marks)
TOTAL FOR SECTION B = 49 MARKS

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (b)}$	Ethanol will dissolve $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ AND sodium hydroxide $/ \mathrm{NaOH} / \mathrm{OH}^{-}$ OR Ethanol will dissolve both reactants ALLOW Water will dissolve sodium hydroxide / NaOH / OH- but not $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ OR Ethanol is a co-solvent / common solvent OR Ethanol enables the reactants to mix	(1)	
IGNORE halogenoalkanes are insoluble in water' by itself			

Question Number	Acceptable Answers	Reject	Mark
22(c)(i)	Going from 2 to 1 [$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$] doubles (while [NaOH] remains constant) OR Volume for concentration Rate doubles so order wrt $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}=1$ Going from 3 to $1[\mathrm{NaOH}] /\left[\mathrm{OH}^{-}\right]$doubles (while [$\left.\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]$ remains constant.) Rate doubles so order wrt [NaOH] / [OH^{-}] =1 Score max 1 if mixtures not specified Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right][\mathrm{NaOH}]$ OR Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$ TE on incorrect orders MP3 cannot be awarded unless the data for both $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ and NaOH have been used in an attempt to deduce the orders of reaction (1 and 1 or 1 and 0)	Use of volume without explanation	(3)

Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	MP 1 (calculates concentrations) $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]=0.150 \times 100 / 500$ $\left(=0.030\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right)$ $[\mathrm{NaOH}]=0.150 \times 250 / 500$ $\begin{equation*} \left(=0.075\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\right) \tag{1} \end{equation*}$ MP 2 (calculates value of k) $\mathrm{k}=\frac{2.50 \times 10^{-4}}{0.030 \times 0.075}=0.11$ ALLOW 1/9 for 0.11 TE on incorrect concentrations IGNORE SF except 1 SF MP 3 (units) $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ TE on rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]$ gives MP1 $\begin{aligned} {\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right] } & =0.150 \times 100 / 500 \\ & =0.030\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ MP2 $8.33 \times 10^{-3} / 0.00833$ MP3 s^{-1}		(3)

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :---: | :--- | :---: |
| 22(c)(iii) | Rate constant would be larger (1) | (2) | |
| | Rate would be faster and because the C-I
 bond is weaker (than the C-Br bond) (1)
 IGNORE
 $\mathrm{C}-\mathrm{I}$ is longer than $\mathrm{C}-\mathrm{Br}$ | Just 'rate is
 faster' | |

Question Number	Acceptable Answers	Reject	Mark		
22(c)(iv)	The slow / rate-determining step of the mechanism involves $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ and $\mathrm{NaOH} / \mathrm{OH}^{-}$ ALLOW The slow / rate-determining step of the mechanism involves both reactants	(1)			
IGNORE					
Species for reactants					
TE on rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]$ for					
The slow / rate-determining step of the					
mechanism involves $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ only					
ALLOW					
Involves one reactant only					IGNORE
:---					
$\mathrm{S}_{N} 2 / \mathrm{S}_{N} 1$	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mark
22(c)(v)	Answers must be consistent with 22(c)(iv) ALLOW CH_{3} for methyl groups primary halogenoalkanes undergo substitution by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism OR (TE on incorrect rate expression and (c)(iv)) tertiary halogenoalkanes undergo substitution by an $\mathrm{S}_{\mathrm{N}} 1$ mechanism		(2)

Question Number	Acceptable Answers	Reject	Mark
22(d)	IGNORE R group / dipoles / stages after the transition state Products even if incorrect Curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br or just beyond ALLOW This curly arrow drawn on the intermediate Curly arrow from lone pair of O on OH^{-}to C atom COMMENT Award MP2 if arrow closer to lp than to $\mathrm{O} /$ charge Transition state including partial bonds and charge on any part of the intermediate OR (max 1 for $\mathrm{S}_{\mathrm{N}} 1$) Curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br or just beyond it and intermediate scores 1		(3)

