Mark Scheme (Results)

October 2018

Pearson Edexcel International Advanced Level
In Chemistry (WCH04)
Paper 01 Rates, Equlibria and Further
Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018
Publications Code WCH04_01_1810_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	The only correct answer is C A is not correct because rate constants always have units	B is not correct because this shows the units of a first order reaction	D is not correct because this shows the units of a second order reaction

Question Number	Correct Answer	Reject	Mark
$\mathbf{2}$	The only correct answer is B A is not correct because there is no change in the numbers of moles of gas in the reaction	1	
C is not correct because the reaction is in aqueous solution \mathbf{D} is not correct because the reaction is in aqueous solution		1	

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	The only correct answer is A B is not correct because this is the shape of the graph of [reactant] v time for a first order reaction C is not correct because this shows rate decreasing with increasing [reactant] \mathbf{D} is not correct because this is the shape of the graph of [product] v time for a first order reaction	1	

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	The only correct answer is C A is not correct because $\Delta S_{\text {system }}$ is expected to be negative as three moles of gas becomes two moles of gas B is not correct because $\Delta S_{\text {system }}$ is expected to be negative as three moles of gas becomes two moles of gas and $\Delta S_{\text {surroundings }}$ must be positive as the reaction is exothermic D is not correct because $\Delta S_{\text {surroundings }}$ must be positive as the reaction is exothermic 1(

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	The only correct answer is B A is not correct because this is irrelevant to the entropy of a substance \mathbf{C} is not correct because these are the conditions for the standard enthalpy of formation of an element	1	
D is not correct because the molar entropy of a perfect crystal is not zero at the triple point			

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	The only correct answer is D A is not correct because all gases mix regardless of their densities	B is not correct because these correct values have no bearing on the mixing process	C is not correct because the energy change is approximately zero.

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	The only correct answer is \mathbf{C}		1
	A is not correct because $R \ln K=\Delta S_{\text {total }}$		
	B is not correct because $R \ln K=\Delta S_{\text {total }}$		
	D is not correct because $R \ln K=\Delta S_{\text {total }}$		

Question Number	Correct Answer	Reject	Mark
8	The only correct answer is C A is not correct because water is in the gas state so $p\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right.$) must be included in the K_{p} expression B is not correct because the expression is inverted and $p\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)$ has been omitted D is not correct because this is the K_{p} expression for the reverse reaction		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	The only correct answer is D A is not correct because equilibrium is reached before time t	1	
B is not correct because the concentrations continue to change after time t	C is not correct because the concentrations continue to change after time t		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	The only correct answer is A B is not correct because water will have the smaller iodine concentration	1	
	C is not correct because water will be the upper layer \mathbf{D} is not correct because water will be the upper layer and have the smaller iodine concentration		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	The only correct answer is \mathbf{A}		1
	B is not correct because NH_{2}^{-}is a base		
	\mathbf{C} is not correct because NH_{2}^{-}is a base		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	The only correct answer is B		1
	A is not correct because the pH is 7.1 \mathbf{C} is not correct because water is not alkaline \mathbf{D} is not correct because water is not alkaline. $7.2=\log \left(6.4 \times 10^{-15}\right)-7.0$		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	The only correct answer is B A is not correct because the degree of dissociation increases with dilution	C is not correct because the solution becomes less acidic and the degree of dissociation increases with dilution	D is not correct because the solution becomes less acidic with dilution

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	The only correct answer is B		1
	A is not correct because $13.0=\mathrm{p} K_{\mathrm{w}}+\log _{10}\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]$ C is not correct because $13.8=\mathrm{p} K_{\mathrm{w}}-2 \mathrm{x}\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]$ \mathbf{D} is not correct because $13.9=\mathrm{p} K_{\mathrm{w}}-\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]$		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	The only correct answer is A B is not correct because pure propanone does not form hydrogen bonds	C is not correct because while propanone forms stronger London forces than butane this is insufficient to account for the difference	D is not correct because although this is correct it does not account for the difference

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	The only correct answer is B	1	
	A is not correct as copper is not formed with ethanal C is not correct as copper is not formed with ethanal and the ethanal is oxidised not reduced	D is not correct as the ethanal is oxidised not reduced	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 7}$	The only correct answer is D		1
	A is not correct because this would form ethanol	C is not correct because this would form ethanol acid	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 8}$	The only correct answer is D A is not correct because propyl methanoate forms methanoic acid and ethanenitrile forms ethanoic acid	1	
B is not correct because propyl methanoate forms methanoic acid	C is not correct because ethanenitrile forms ethanoic acid		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 9}$	The only correct answer is A		1
	B is not correct because this is not formed		
	\mathbf{C} is not correct because this is not formed		

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 0}$	The only correct answer is C A is not correct because radio waves have insufficient energy to initiate reactions	1	
	B is not correct because radio waves have insufficient energy to initiate reactions D is not correct because ultraviolet radiation does initiate organic reactions		

(Total for Section A = 20 marks)

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a)}$	(entropy change) will be positive OR $\Delta S_{\text {system }}>0$ and because (3 mol of) a gas is formed (from a solid)	Use of atoms or molecules for moles	1
	ALLOW (for second point) because 5 mol of product from 2 mol reactant OR because mol of product > mol reactant OR 2 mol goes to 5 mol		

Question Number	Acceptable Answers	Reject	Mark
21(b)	$\begin{align*} & \text { Penalise } 1 \mathrm{SF} \text { once in }(\mathrm{b}),(\mathrm{c}),(\mathrm{d}) \\ & 2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \\ & \mathrm{S}_{298}^{0} / \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}:\left(\mathrm{NaN}_{3}(\mathrm{~s})=70.5\right) \\ & \mathrm{Na}(\mathrm{~s})=51.2 \\ & 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})=95.8 \tag{1}\\ & \Delta S_{\text {system }}=2 \times 51.2+6 \times 95.8-2 \times 70.5 \tag{1}\\ & =102.4+574.8-141 \\ & =(+) 536.2 \mathbf{J ~ K}^{-\mathbf{1}} \mathrm{mol}^{-\mathbf{1}} \tag{1} \end{align*}$ IGNORE SF except 1 SF Correct answer with units scores (3) TE on incorrect values Using 3×95.8 gives $+248.8 \mathbf{J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{\mathbf{- 1}}$ scores (2) Using $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})=0$ gives $-38.6 \mathbf{J ~ K}^{\mathbf{- 1}} \mathrm{mol}^{\mathbf{- 1}}$ this scores (2) only if factor $x 6$ used	Incorrect sign from expression	3

Question Number	Acceptable Answers	Reject	Mark
21(c)	$\begin{align*} & \Delta S_{\text {surroundings }}=-\Delta H_{\text {reaction }} \\ & \mathrm{T} \\ &=-(-42600) / 298 \tag{1}\\ &=(+) 142.953 / 143\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \tag{1}\\ & \mathrm{OR} \\ &=-(-42.6) / 298 \tag{1}\\ &=(+) 0.142953\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & /(+) 0.143 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-\mathbf{1}} \tag{1} \end{align*}$ Doubling the value (giving (+)285.906 ($\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$) / (+)0.285906 $\mathbf{k J ~ K}^{-1}$ $\mathbf{m o l}^{-\mathbf{1}}$ scores (1) unless already penalised in (b) $-0.142953 / 0.143 \mathbf{k J ~ K}^{\mathbf{- 1}} \mathbf{~ m o l}^{-\mathbf{1}}$ scores (1) IGNORE SF except 1 SF Correct answer (with units if 0.142953) scores (2)	incorrect units incorrect units	2

Question Number	Acceptable Answers	Reject	Mark
21(d)	$\begin{align*} \Delta S_{\text {total }} & =\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \\ & =536.2+142.953 \tag{1}\\ & =(+) 679.153\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \tag{1}\\ \mathrm{OR} & \\ & =0.5362+0.142953 \tag{1}\\ & =(+) 0.679153 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ No TE on incorrect expression IGNORE SF except 1 SF Correct answer scores (2) TE on (b) and (c) unless final value is negative when max 1 mark Value with $\Delta S_{\text {surroundings }}$ doubled $=$ $(+) 822.106\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) /$ $(+) 0.822106\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ scores (2) Value from $\Delta S_{\text {system }}=+248.8 \mathbf{J ~ K}^{\mathbf{- 1}}$ mol^{-1} is $391.75\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) / 0.39175(\mathrm{~kJ}$ $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$)		2

Question Number	Acceptable Answers	Reject	Mark
21(e)	The (molar) entropy of a substance (always) increases / becomes more positive with (increasing) temperature ALLOW The (molar) entropy of a gas increases the most with (increasing) temperature		3
	There are more moles of product than of reactant OR 3 mol of gas are formed (from a solid) OR Na changes from solid to liquid (1)		
so $\Delta S_{\text {system must increase }}$ MP3 dependent on MP1 being scored			
If no other mark is scored, ` $\Delta S_{\text {system }}$ increases because increasing temperature increases the disorder of the system / reaction' scores (1)			
IGNORE Explanations based on K_{c} or Le Chatelier OR Based on the change in $\Delta S_{\text {surroundings }}$ with temperature			
(Total for Question 21 = 11 marks)			
Question Number	Acceptable Answers	Reject	Mark
---	---	---	---
22(a)(i)	MP1 Explanation of $K_{\mathrm{a} 1}$ values $K_{\mathrm{a} 1} \gg K_{\mathrm{a} 2}$ or $\mathrm{p} K_{\mathrm{a} 1} \ll \mathrm{p} K_{\mathrm{a} 2}$ so first ionisation / dissociation is much greater than second ionisation / dissociation ALLOW $\mathrm{p} K_{\mathrm{a} 2}$ larger (than $\mathrm{p} K_{\mathrm{a} 1}$) and so $K_{\mathrm{a} 2}$ smaller (than $K_{\mathrm{a} 1}$) OR As $\mathrm{p} K_{\mathrm{a}}$ increases acid strength decreases MP2 Effect of first dissociation (relatively) high $\left[\mathrm{H}^{+}\right]$suppresses second / further ionisation / dissociation ALLOW First ionisation suppresses / weakens second ionisation OR Ionising / dissociating / removing a proton from a negative ion requires more energy / is more difficult IGNORE Reference to 'weak acid' Reference to H -bonding Reference to third ionisation / dissociation	Reference to ionisation energy Alcohol OH ionises	2
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
22(a)(ii)	$\mathrm{H}_{3} \mathrm{~A} \rightleftharpoons \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~A}^{-}$ OR $\mathrm{H}_{3} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{~A}^{-}$	1	
	ALLOW Single headed arrow or ' $=$ ' for \rightleftharpoons IGNORE State symbols even if incorrect $K_{\text {a }}$ expression		
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
22(a)(iii)	IGNORE SF except 1 SF Correct answer with some correct working scores (3) $\left[\mathrm{H}_{3} \mathrm{~A}\right]=0.1487 / 0.149\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ (from rounding 0.01047 to 0.0105) scores (3) $\left[\mathrm{H}_{3} \mathrm{~A}\right]=0.135 / 0.14$ (from rounding 0.01047 to 0.01) scores (2) $\begin{aligned} & {\left[\mathrm{H}_{3} \mathrm{~A}\right]=3.503 \times 10-5 / 0.0003503} \\ & (\mathrm{~mol} \mathrm{dm} \\ & \text { from } K_{\mathrm{a} 1}=3.13 \text { scores }(2) \end{aligned}$ If no other mark is scored allow (1) for $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-1.98}} \\ & =0.010471 / 0.0105 / 0.010\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	$\begin{aligned} & 0.01(\mathrm{~mol} \\ & \left.\mathrm{dm}^{-3}\right) \end{aligned}$	3
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
22(b)(i)	The pulp could block (the tip of) the pipette OR The pipetted volume might be too low	Pulp causes side reactions / reacts with	1
NaOH			
:---			
blockages'	$~\left(\begin{array}{l}\text { (b) }\end{array}\right.$		
Question Number	Acceptable Answers	Reject	Mark
---	---	---	---
22(b)(ii)	Phenolphthalein OR Thymol blue (base) / 8.0-9.6 OR Thymolphthalein ALLOW Phenol red Indicator range should cover roughly the mid-point of $6.4\left(=\mathrm{p} K_{\mathrm{a} 3}=\mathrm{pH}\right.$ of second buffer region) and 13 (pH of NaOH) OR Indicator range mid-point needs to be about 2 units above 6.4 ALLOW Indicator range needs to be from $6.5-8.0$ to $10-13$ IGNORE Weak acid-strong base titration General statements about the vertical section of the titration curve Statement of selected indicator's range	Just 'thymol blue'	2
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
22(b)(iii)	MP1 Calculates moles NaOH $\begin{align*} & =0.095 \times 19.65 \times 10^{-3} \\ & =1.86675 \times 10^{-3} / 0.00186675(\mathrm{~mol}) \tag{1} \end{align*}$ MP2 Calculates moles citric acid $\begin{align*} & =\mathrm{mol} \mathrm{NaOH} \div 3 \\ & =6.2225 \times 10^{-4} / 0.00062225(\mathrm{~mol}) \tag{1} \end{align*}$ MP3 Scales mol citric acid to $250 \mathrm{~cm}^{3}$ (x 10) and scales original volume of lemon juice to $1 \mathrm{dm}^{3} \quad(x 1000 / 25)$ $=$ answer to MP2 $\times 10 \times 40=0.2489 \mathrm{~mol}$ dm^{-3} MP4 Calculates molar mass of citric acid molar mass (citric acid) $\begin{equation*} =6 \times 12+8+7 \times 16=192 \tag{1} \end{equation*}$ MP5 Calculates concentration of citric acid = molar mass of citric acid x answer to MP3 $\begin{equation*} =192 \times 0.2489=47.7888\left(\mathrm{~g} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ IGNORE SF except 1 SF TE at each stage Correct answer with no working scores (5) $143.37\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ [MP2 incorrect] scores 4 COMMENT ALLOW MP5 for multiplying the calculated M_{r} by MP2 OR MP2 $\times 10$ or MP2 $\times 40$ Note that all the scaling is in MP3	Just a number $x M_{r}$	5
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
22(b)(iv)	The citric acid content / amount / concentration varies for different lemons	Reference to errors and uncertainties in the procedure.	1
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
22(c)(i)	A buffer resists change in pH OR Maintains a fairly / nearly constant pH ALLOW 'large / small change' for 'change' 'withstands change in pH^{\prime}	Keeps pH constant pH remains the same prevents change in pH	(1)
on the addition of small amounts of			
acid and / or of alkali			
ALLOW			
Base / OH^{-}for alkali and H^{+}for acid (1)			
:---			
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{2 2 (c) (i i) ~}$	3.13 OR $\mathrm{pH}=3.13$ OR $\mathrm{pH}=\mathrm{p} K_{\mathrm{a} 1}=3.13$	$\mathrm{p} K_{\mathrm{a} 1}=3.13$	1
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
22(c)(iii)	Allow use of $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7} \mathrm{Na}$ for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}$ throughout MP1 Citric acid / $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ and dihydrogen citrate $/ \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}$are present in high concentration (and so their values do not change significantly when small amounts of acid or alkali are added) ALLOW 'large amount' / '(large) excess' for high concentration (Large) reservoir of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ and $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}$ OR reservoir of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ and its conjugate base MP2 When acid is added the $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}$is protonated / reacts, removing the H^{+}ion from the solution ALLOW $\begin{equation*} \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \tag{1} \end{equation*}$ MP3 When alkali is added the $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ is deprotonated / reacts, removing the OH^{-} ion from the solution ALLOW $\begin{equation*} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ MP2 and MP3 may be scored by referring to the equilibrium $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ Use of HA and A^{-}or general 'weak acid and salt' scores MP2 and MP3 only IGNORE Reference to ratio of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ and $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}$ concentrations		3
(Total for Question 22 = 21 marks)			
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
23(a)	Brady's reagent OR $2,4-$-dinitrophenylhydrazine		2
	ALLOW $2,4-$ DNPH / 2,4-DNP / DNPH (1)	Incorrect abbreviation e.g. DNHP / DPNH	
	Red /orange / yellow and precipitate (forms in both cases) ALLOW ppt / ppte / solid / crystals for precipitate	solution	
(1) Observation mark depends on correct reagent or near miss (e.g. DNHP)			
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
23(b)	(Warm with) iodine and sodium hydroxide OR (Warm with) potassium iodide and sodium chlorate(I) ALLOW iodine in alkali / I_{2} and OH^{-} With heptan-2-one Antiseptic smell observed OR (Pale) yellow crystals form ALLOW precipitate / ppt / ppte / solid / suspension for crystals With heptan-3-one No (observed) change ALLOW no reaction / observation / negative result No TE on any other test but if 'iodoform test' stated, MP2 and MP3 may be awarded. IGNORE Physical tests including on derivatives	Just 'smell' Brown solution	3
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
23(c)(i)	Carbonyl peak circled ALLOW Any means of selecting this peak Carbonyl group / $\mathrm{C}=\mathrm{O}$ (responsible) These marks are standalone	$\begin{align*} & \text { Just } \tag{1}\\ & 1700-1680 \\ & \left(\mathrm{~cm}^{-1}\right) \tag{1} \end{align*}$	2
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{2 3 (c) (i i)}$	Yes because the IR spectra of the isomers would have different fingerprint regions. OR Yes by comparing the spectrum to reference spectra. ALLOW No because they have the same functional group / bonds OR Both are ketones IGNORE Just 'spectra would be different' OR 'Spectra have different peaks'	1	
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
23(d)(i)			

Question Number	Acceptable Answers	Reject	Mar k
23(e)(i)	All four curly arrows correct ALLOW curly arrow from any part of CN^{-}including from the charge Intermediate Both final products Mechanism with curly arrow from intermediate to H^{+}and formation of cyanohydrin only scores (3) Any two or three correct curly arrows scores 1 Curly arrows must start and finish reasonably close to the relevant atoms / bonds If the nucleophilic attack is in two stages (via ${ }^{+} \mathrm{C}$ -O^{-}) do not award the intermediate mark (max 3) Dipoles are not required but if shown must be correct CN bond does not need to be displayed Lone pairs are not required Penalise omission of charges once only	CN^{-} charge omitted	4
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
23(e)(ii)	A racemic mixture is formed (1) heptan-2-one is planar and about the carbonyl carbon ALLOW Bonds about C=O (trigonal) planar OR carbonyl carbon is (trigonal) planar (1)	ion / molecule is planar	3
	So the CN		
above and below / either side of the molecule ALLOW Nucleophile / CN for CN^{-} (1)			
(Total for Question 23 = 19 marks) (Total for Section B = 51 marks)

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a)}$	ALLOW Any representation of the electrons, (including all electrons the same) Bond electrons horizontal (H xo O)	1	
	IGNORE Bonds shown as lines Position of lone pairs H-O-O-H Omission of circles		

Question Number	Acceptable Answers	Reject	Mark		
24(b)	Any two from:		2		
	Hydrogen peroxide has a bigger dipole (moment than water) / larger dipole-dipole forces ALLOW Hydrogen peroxide is more polar (1) (than water)				
	Hydrogen peroxide has greater London / dispersion forces (than water) ALLOW van der Waals / vdW / induced dipole-induced dipole forces	(1)		\quad	Hydrogen peroxide forms a higher
:---					
proportion of hydrogen bonds in its					
liquid state (than water)					
ALLOW					
Hydrogen peroxide forms more					
hydrogen bonds in its liquid state					
(than water)					
OR					
Hydrogen peroxide forms stronger					
hydrogen bonds (than water) (1)	\quad	For more hydrogen bonds allow			
:---					
specified numbers e.g. hydrogen					
peroxide forms 2 but water forms 1	\quad	The comparisons are required			
:---	\quad	(1)			
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c)}$	The oxygen- oxygen /O-O /peroxide (single) bond is weak	Just 'weak bonds'	1
	ALLOW O=O is strong so the products are thermodynamically more stable		
IGNORE Entropy arguments			

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 4 (d) (i)}$	Add sample to (ice-cold) water	Addition of any chemical apart from $\mathrm{H}_{2} \mathrm{O}$	1		
ALLOW Dilute sample in water	Place in ice-bath			\quad	
:---					

Question Number	Acceptable Answer	Reject	Mark
24(d)(ii)	See below for example Sensible choice scale (to cover at least half the grid in both directions) and labelled axes with units on both axes ALLOW [] for $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.$] All points given in table correctly plotted Dependent on linear axes used Any sensible reasonably smooth best fit curve reasonably close to the points	Nonlinear scale scores (0) point to point	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i i i)}$	$\mathrm{t}_{1 / 2}(1)=47 \mathrm{~s}$ $\mathrm{t}_{1 / 2}(2)=47 \mathrm{~s}$ ALLOW 44-50 s Values may be shown on the graph No TE on a badly drawn line	no working shown	1

Question Number	Acceptable Answers	Reject	Mark
24(d)(iv)	Because both values are the same / similar the reaction is first order (with respect to hydrogen peroxide)	Just 'first order'	1
	This mark may only be awarded if half lives in 24(d)(iii) are the same (within 6 seconds of each other)	OR half lives are given as (e.g.) 47 and 94 s Allow this mark if only 1 correct half life is given in 24d(iii) but 2 structure lines are shown on the graph	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (v)}$	个		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (e) (i)}$	First order / order 1 and (e.g.) Because doubling / halving $\left[\mathrm{Fe}^{3+}\right]$ results in a doubling / halving of the rate	OR Because tripling $\left[\mathrm{Fe}^{3+}\right]$ results in a tripling of the rate	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (e) (i i)}$	Rate $/ \mathrm{R}=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{Fe}^{3+}\right]$ TE on (d)(iv and (e)(i) Score (0) if these are blank	1	

Question Number	Acceptable Answers	Reject	Mark
24(f)(i)	(e.g. from graph) $\begin{align*} & \frac{1000 \times(6.98-5.86)}{-(3.55-3.15)}=-\frac{1.12}{0.40} \times 1000 \tag{1}\\ & =-2.80 \times 10^{3}(\mathrm{~K}) \end{align*}$ ALLOW $\begin{equation*} -2.70 \times 10^{3} \text { to }-2.90 \times 10^{3} \tag{1} \end{equation*}$ Answer as a fraction $-2.80 \times 10^{-3}(\mathrm{~K}) /-2.80(\mathrm{~K})$ (or values within the 2.70-2.90 range) score (1) Coefficient with correct sign and no units or correct units scores (1) Correct magnitude scores (1)	positive value Incorrect units	2

Question Number	Acceptable Answers	Reject	Mark
24(f)(ii)	$\begin{align*} & \text { gradient }=-E_{\mathrm{a}} / R \\ & -2.80 \times 10^{3}=-E_{\mathrm{a}} / 8.31 \tag{1} \end{align*}$ $E_{\mathrm{a}}=+23268 \mathrm{~J} \mathrm{~mol}^{-1} /+23.268 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ALLOW 22.4 to $24.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Value with sign (1) units (1) Units must be correct for the calculation done IGNORE SF except 1 SF TE on (f)(i) for value and sign If the answer to (f)(i) is positive then E_{a} has to be negative (even though this is chemically incorrect) If 'kilo' prefix used even in an incorrect unit $8.31 \times$ gradient must be divided by 1000 otherwise the value from (f)(i) x 8.31 scores the mark		3

Question Number	Acceptable Answers	Reject	Mark
24(g)	Hydrogen peroxide decomposes to form (only) water $/ \mathrm{H}_{2} \mathrm{O}$ and oxygen $/ \mathrm{O}_{2}$ (which are environmentally harmless)	1	
IGNORE Forms harmless products			

(Total for Question 24 = 19 marks) (Total for Section $C=19$ marks) (Total for Paper $=90$ marks)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

