

Mark Scheme (Results)

Summer 2013

GCE Chemistry 6CH05/01
General Principles of Chemistry II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035576
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) Ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) Select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) Organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- Examples of responses that should NOT receive credit.
/ Means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
Ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Mark
1	C	1
Question Number	Correct Answer	Mark
2	D	1
Question Number	Correct Answer	Mark
3	A	1
Question Number	Correct Answer	Mark
4	C	1
Question Number	Correct Answer	Mark
5	C	1
Question Number	Correct Answer	Mark
6	C	1
Question Number	Correct Answer	Mark
7	A	1
Question Number	Correct Answer	Mark
8	D	1
Question Number	Correct Answer	Mark
9	D	1
Question Number	Correct Answer	Mark
10	D	1
Question Number	Correct Answer	Mark
11	A	1

Question	Correct Answer	Mark
Number		
$\mathbf{1 2}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	C	$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark	
21(b)(i)				

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	- 1 atm / $100 \mathrm{kPa} / 101 \mathrm{kPa} / 1$ bar - $1 \mathrm{~mol} \mathrm{dm}^{-3}\left(\left[\mathrm{H}^{+}\right] /[\mathrm{HCl}]\right)$ ALLOW '1 molar' / '1M' - $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ ALLOW " ${ }^{\circ} \mathrm{K}$ " All THREE conditions correct $=\mathbf{2}$ marks Any TWO conditions correct $=\mathbf{1}$ mark IGNORE References to 'standard conditions' References to Pt/catalyst ALLOW $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ INSTEAD of the $1 \mathrm{~mol} \mathrm{dm}^{-3}\left(\left[\mathrm{H}^{+}\right] /\right.$ [HCl)	Wrong pressure units Incorrect concentration units (eg '1 $\mathrm{mol}^{\prime} / 1 \mathrm{~mol}^{-1}$ dm^{3} for $\left[\mathrm{H}^{+}\right]$) $273 \mathrm{~K} / 0^{\circ} \mathrm{C} /{ }^{\text {room }}$ temperature'	2

Question Number	Acceptable Answers	Reject	Mark
21(c)	First mark: Mentions / some evidence for the use of BOTH equations 1 AND 3 from the table in any way, even if reversed or left unbalanced eg $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$ (aq) AND $\begin{equation*} 4 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+ \tag{1} \end{equation*}$ $4 \mathrm{e}^{-}$ ALLOW $\rightleftharpoons \text { for } \rightarrow$ Second mark: (Adds the above half-equations cancelling $4 \mathrm{e}^{-}$to get) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ OR $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ ALLOW $\rightleftharpoons \text { for } \rightarrow$ but must have H_{2} and O_{2} on left Mark the second scoring point independently Award this mark if the correct equation is seen, no matter how it is derived ALLOW MULTIPLES OF EQUATIONS IN ALL CASES IGNORE any state symbols, even if incorrect ALLOW equilibrium sign \rightleftharpoons used in ANY of the above equations instead of the full arrows	Equations involving H^{+} If $\mathrm{e}^{-} / \mathrm{OH}^{-} / \mathrm{H}^{+} /$two surplus $\mathrm{H}_{2} \mathrm{O}$ molecules remain in this final equation (0) for 2nd mark	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (d)}$	$\mathrm{E}_{\text {cell }}^{\ominus}=+0.40-(-0.83)(\mathrm{V})$ $=(+) 1.23(\mathrm{~V})$	$\mathbf{- 1 . 2 3 (\mathrm { V })}$	
+sign NOT required in final answer Correct answer with or without working scores (1) No ECF from any incorrect E values used	$\mathbf{1}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (e)}$	Reaction / equation is the same OR Reaction / equation for both is $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ ALLOW \rightleftharpoons for \rightarrow	'Electrode potentials don't change' Just same product / water is produced Just same reactants are oxidized and reduced	$\mathbf{1}$
	IGNORE state symbols even if incorrect ALLOW statements such as 'they both produce water from hydrogen and oxygen' / 'reactants and products are the same' ALLOW multiples of the equation	Same reaction but in reverse scores (0)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (f)}$	To increase the surface area /to increase the number of active sites		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21(g)	Storage (problems) OR hydrogen / oxygen / the gases have to be stored under pressure OR Leakage (of hydrogen / of oxygen /of gas) OR Transport(ation) problems OR Hard to carry / lack of portability OR Hydrogen flammable / inflammable OR Hydrogen explosive OR (Fuel cell) costly / expensive OR Needs (regular) re-filling OR Needs continual replenishment of H_{2} and O_{2} OR Lack of availability (of hydrogen / fuel) OR Hydrogen is made from fossil fuels / hydrogen is made by electrolysis / hydrogen is made from Natural Gas / hydrogen is made from non-renewable resources ALLOW water is a Greenhouse gas / Fuel cell(s) have short(er) life-span / Fuel cells have to be (regularly) replaced IGNORE references to just 'danger' or just 'safety' or just 'hazardous' Any arguments in terms of voltage output References to cannot be recharged	'Fuel cell can only be used once' scores (0)	1

Total for Question 21 = 12 Marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i) ~}$	Addition / reduction / free-radical addition IGNORE references to 'hydrogenation'	'redox' 'electrophilic addition' 'nucleophilic addition'	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	First mark: Delocalization (of n/p electrons in benzene ring) IGNORE reference to 'resonance'		$\mathbf{2}$
	Second mark: Results in more energy needed to break the bonds in benzene (compared with three separate п (1) bonds) ALLOW confers stability on the molecule / makes benzene more stable (than expected) IGNORE Reference to carbon-carbon bond lengths Values of any enthalpy changes Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	First mark: For "4" Second mark: Product as above / correct skeletal formula of product ALLOW Side chain written as $-\mathrm{C}_{2} \mathrm{H}_{5}$ Third mark: -328 ($\mathrm{kJ} \mathrm{mol}^{-1}$) NOTE One H_{2} added showing a CQ correct product with only side chain reduced and $\mathrm{cq} \Delta \mathrm{H}=-120\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (2) Three H_{2} added showing a CQ correct product with only the benzene ring reduced and cq $\Delta \mathrm{H}=-208\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores Five H_{2} added with fully correct product drawn and $\Delta \mathrm{H}=-448$ ($\mathrm{kJ} \mathrm{mol}^{-1}$) scores Three and a half H_{2} added showing a fully correct product and $\Delta \mathrm{H}=-268 /-293(.3)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ scores NOTE Mark scoring points independently		3

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	Mark awarded for displaying		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	Electrophilic substitution BOTH words needed IGNORE references to 'acylation' and /or 'Friedel-Crafts'		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(b)(iii)	Friedel and Crafts BOTH names are needed for this mark		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(b)(iv)	First mark: $\mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C O C l}+\mathrm{AICl}_{3} \rightarrow \mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C O}^{+}+\mathrm{AlCl}_{4}$ + can be anywhere on the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$ in the equation for the first mark	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (b) (v) ~}$	Absorbs / reflects / blocks / protects from / shields against / uv (light/ radiation) IGNORE 'non-toxic' / references to IR	adsorbs uv light	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	First mark EITHER Identifies correctly the three different proton environments ALLOW If the three different proton environments are only shown on one of the benzene rings NOTE On right-hand ring, clockwise from $\mathrm{C}=0$, positions 2, 3 and 4 And /or 2,4 and 5 are shown as different environments and /or On left-hand ring, anti-clockwise from $\mathrm{C}=0$, positions 2, 3 and 4 And /or 2,4 and 5 are shown as different environments OR Identifies proton Z correctly on both benzene rings Second mark Fully correct labelling both rings using the letters \mathbf{X}, \mathbf{Y} and \mathbf{Z} NOTE \mathbf{X} and \mathbf{Y} labels are interchangeable, \mathbf{Z} is not		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (a) (i) ~}$	Lone pair (of electrons on the nitrogen atom) ALLOW non-bonded pair (of electrons on the nitrogen atom)	Lone pairs Spare pair	$\mathbf{1}$

Question Number	Acceptable Answers ${ }^{\text {a }}$ Reject	Mark
23(a)(ii)	(with $\mathrm{H}_{\mathbf{2}} \mathrm{SO}_{4}$) $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+}\right)_{2} \mathrm{SO}_{4}{ }^{2-}$ ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+} \mathrm{HSO}_{4}{ }^{-}$ (with $\mathrm{CH}_{3} \mathbf{C O O H}$) $\begin{equation*} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+} \mathrm{CH}_{3} \mathrm{COO}^{-} \tag{1} \end{equation*}$ CHARGES not essential Cation and anion can be in either order Max (1) if formula of the amine is incorrect in either case ALLOW (1) if only the correct cation is given in each case (i.e. the anion has been omitted in both cases) NOTE The correct ions can be shown separately Eg ${ }_{\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+}\right)_{2}+\mathrm{SO}_{4}{ }^{2-} .}$	2

Question Number	Acceptable Answers	Reject	Mark
23(b)	Tin / Sn ALLOW Iron / Fe (concentrated) hydrochloric acid NOTE If they write ' HCl ', there must be some indication of concentrated Eg 'conc $\mathrm{HCl}^{\prime} /$ 'concentrated HCl^{\prime} ALLOW $\mathrm{HCl}(\mathrm{aq})$ (Followed by addition of alkali to liberate the free amine) Mark the two points independently NOTE Do not allow $2^{\text {nd }}$ mark if there is a suggestion that the acid and alkali are added together simultaneously	LiAlH_{4} Just 'HCI' 'dilute' hydrochloric acid / sulfuric acid	2

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c) (i i i)}$	(Conditions) (Presence of) $\mathrm{NaOH} / \mathrm{KOH}$ / alkali (1) /OH' ALLOW 'Alkaline (conditions)' or 'base' or 'high pH' IGNORE Any references to temperature (Use) Dye / pigment / colouring / indicator /in foodstuff / in paint / methyl (1) orange IGNORE Any reference to medicines	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (i) ~}$	(Otherwise) too much (product) remains in solution OR If excess (solvent) is used, crystals might not form		$\mathbf{1}$
	ALLOW To avoid losing (too much) product (in the filtrate when crystallization occurs) /'to maximize the yield'/ 'will crystallize better from a concentrated solution'/ 'will recrystallize (better) when cold'	IGNORE References to a 'saturated solution' or references to 'dilution' or references to the time taken for crystals to form	

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	(Insoluble impurities removed) By hot filtration / During the first filtration / During the second step in the process (1)	2	
	(Soluble impurities removed) By remaining in solution / Left in filtrate / Removed when washed (with cold solvent)	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (i i i) ~}$	Measure the melting temperature / melting point and compare with data / known value (from a data book / literature / Internet /data base) (BOTH points needed for the mark) OR	(0) if reference to determination of the boiling point is made	$\mathbf{1}$
	The melting point is sharp (Just this statement is needed for the mark) ALLOW Any form of chromatography IGNORE References to any types of spectroscopy		

Total for Question 23 = 15 Marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a) (i)}$	$\mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow 4 \mathrm{NaCl}+\mathrm{Ti}$		$\mathbf{1}$
	IGNORE State symbols, even if incorrect ALLOW Multiples Reversible arrows		

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	Ti reduced as oxidation number decreases from $\mathbf{+ 4}$ to $\mathbf{0}$ / changes from +4 to 0 Na oxidized as oxidation number increases from $\mathbf{0}$ to $\mathbf{+ 1}$ /changes from 0 to +1 ALLOW Correct oxidation numbers only for one mark NOTE Max (1) if no + sign included ALLOW '4+' and/or '1+' given instead of $\boldsymbol{+ 4}$ and +1 NOTE If any of the oxidation numbers are wrong, award max (1) for the idea that during oxidation the oxidation number increases AND during reduction the oxidation number decreases IGNORE References to loss and /or gain of electrons		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c) (i)}$	(d-block element) EITHER Ti has (two) electrons in the 3d subshell / Ti has a partially filled d-subshell / Ti has a partially filled d-orbital / Ti has electrons in d-orbital(s) / Ti has electrons in d-subshell (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital	Outer / highest energy electrons are in a d-orbital / Outer / highest energy electrons are in a d-subshell	Electrons in the 'd-block'/ 'electrons in the d-shell'
OR (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (c) (i i)}$	(transition element)	Forms one (or more stable) ions / forms Ti	
incomplete d-orbital(s) / incons) which have an incomplete d-subshell / a partially filled d-subshell / an unpaired d electron	IGNORE References to variable oxidation states		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i)}$	First mark: d-subshell splits /d-orbitals split (in energy by ligands) /d energy level(s) split(s)	d-orbital / d-shell splits	(1)
	Second mark: absorbs light (in visible region) (1)	absorbs purple light	
Third mark: Electron transitions from lower to higher energy / electron(s) jump from lower to higher energy OR Electron(s) promoted (within d) Mark independently NOTE Maximum of (1) mark (i.e. the first mark only) if refers to electrons falling back down again			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (d) (i i) ~}$	No d-electrons / empty d-subshell		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	TiO_{2} 'Structure' mark EITHER Giant (structure) OR Lattice (structure) IGNORE Whether stated as ionic or covalent for this mark TiO_{2} 'Bonding' mark EITHER Strong (electrostatic) attraction between ions ALLOW Strong ionic bonds / ionic bonds require a lot of energy to break OR Strong covalent bonds/covalent bonds require a lot of energy to break TiCl_{4} 'Structure' mark (Simple) molecules / (small) molecules /molecular TiCl_{4} 'Bonding' mark Weak London / dispersion / van der Waals' forces (between molecules) / London /dispersion / van der Waals' forces (between molecules) require little energy to break	TiO_{2} (small) molecules / simple molecular For TiO_{2} mention of any type of intermolecular forces between molecules of TiO_{2} TiCl_{4} giant structure Covalent bonds broken (on melting) in TiCl_{4} Ionic bonding in TiCl_{4} Hydrogen bonding (0) for this mark	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (e) (i i)}$	Amphoteric ALLOW Recognisable spellings		$\mathbf{1}$
Question Number Acceptable Answers Reject $\mathbf{2 4 (e) (i i i)}$ $\mathrm{TiO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{Ti}(\mathrm{OH})_{6}$ $\mathrm{OR}^{\mathrm{TiO}}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ti}(\mathrm{OH})_{6}{ }^{2-}$ Mark IGNORE state symbols even if incorrect $\mathbf{1}$			

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 24(e)(iv) | | | |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (f) (\mathbf { i })}$	$\left(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+\right) \mathbf{2 \mathbf { e } ^ { (-) } \rightarrow \mathbf { 2 } \mathbf { H } _ { \mathbf { 2 } } \mathbf { O }}$ $\mathbf{B O T H}$ $2 \mathrm{e}^{(-)}$and $\mathbf{2 H} \mathrm{H}_{2} \mathrm{O}$ needed for the mark		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4}$	(It/titanium(III)/Ti ${ }^{3+}$) oxidized (f)(iii) (by oxygen in the air) ALLOW 'It is a strong reducing agent'	Hydrolysis	$\mathbf{1}$

Total for Question 24 = 23 Marks
Total for Paper = 90 Marks

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA035576 Summer 2013

For more information on Edexcel qualifications, please visit our website

