Mark Scheme (Results)

October 2018

Pearson Edexcel International
Advanced Level
In Chemistry (WCH05)
Paper 01 Transition of Metals and Organic Nitrogen

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018
Publications Code WCH05_01_1810_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$ (a)	The only correct answer is A B is not correct because Fe(III) acts as an oxidising agent	(1)
C is not correct because $\mathrm{Cr}(\mathrm{II})$ loses electrons so is oxidised \mathbf{D} is not correct because $\mathrm{Cr}(\mathrm{II})$ loses electrons so is oxidised		

Question Number	Correct Answer	Mark
$\mathbf{1}$ (b)	The only correct answer is B	(1)
	A is not correct because they should both be positive	
	C is not correct because they should both be positive	

Question Number	Correct Answer	Mark
$\mathbf{1 ~ (c)}$	The only correct answer is D	(1)
	A is not correct because carbonate ions might react B is not correct because hydroxide ions might react C is not correct because iodide ions might react	

Question Number	Correct Answer	Mark
$\mathbf{1 ~ (d)}$	The only correct answer is A	(1)
	B is not correct because dividing by 10 for $100 \mathrm{~cm}^{3}$ but not dividing by 2 for $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ C is not correct because dividing by 10 for $100 \mathrm{~cm}^{3}$ but multiplying by 2 and not dividing by 2 D is not correct because dividing by 2 for $\left.\mathrm{Fe}_{2(} \mathrm{SO}_{4}\right)_{3}$ but not dividing by 10	

Question Number	Correct Answer	Mark
$\mathbf{2}$	The only correct answer is C	(1)
	A is not correct because Fe has an oxidation state of +6	
	B is not correct because $C r$ has an oxidation state of +6	
	D is not correct because W has an oxidation state of +6	

Question Number	Correct Answer	Mark
$\mathbf{3}$	The only correct answer is A B is not correct because it is oxidised at the negative electrode C is not correct because it is oxidised not reduced	(1)
D is not correct because it is oxidised not reduced at the negative electrode		

Question Number	Correct Answer	Mark		
$\mathbf{4 (a)}$	The only correct answer is C	(1)		
	A is not correct because this is the second step B is not correct because this is the second step with an incorrect product			
\mathbf{D} is not correct because this is the first step			\quad	
:---				

Question Number	Correct Answer	Mark
4 (b)	The only correct answer is C	(1)
	A is not correct because the 3d subshell does split	B is not correct because the 3d subshell is full D is not correct because there is no movement of electrons in the 3d subshell

Question Number	Correct Answer	Mark
$\mathbf{5}$	The only correct answer is B A is not correct because orbitals are occupied singly before pairing	(1)
C is not correct because the 4s electrons are lost first to form an ion	D is not correct because the 4s electrons are lost first to form an ion	

Question Number	Correct Answer	Mark
$\mathbf{6}$	The only correct answer is A	
B is not correct because X ray diffraction provides no evidence for this	1	
C is not correct because X ray diffraction provides no evidence for this D is not correct because it is not a true statement		

Question Number	Correct Answer	Mark
$\mathbf{7}$	The only correct answer is B	(1)
\mathbf{A} is not correct because this is the reverse order C is not correct because phenylamine has a lower pH than ammonia \mathbf{D} is not correct because diethylamine has a higher pH than ethylamine		

Question Number	Correct Answer	Mark
$\mathbf{8 (a)}$	The only correct answer is D	(1)
	A is not correct because this is not a reducing agent B is not correct because this does not produce the amine C is not correct because this is an oxidising agent	

Question Number	Correct Answer	Mark
$\mathbf{8 (b)}$	The only correct answer is D A is not correct because this is not used to separate phenylamine	(1)
B is not correct because this is not used to separate phenylamine	C is not correct because this is not used to separate phenylamine	

Question Number	Correct Answer	Mark
$\mathbf{8 (c)}$	The only correct answer is C	(1)
	A is not correct because this has an extra amine group	B is not correct because use of phenol would leave an - OH in the molecule
D is not correct because this is a product of the reaction of 1,4-diaminobenzene with nitrous acid in hydrochloric acid		

Question Number	Correct Answer	Mark
$\mathbf{9}$	The only correct answer is D A is not correct because this is the mass of the intermediate	(1)
\mathbf{B} is not correct because this is the overall percentage		
\mathbf{C} is not correct because this is the overall percentage		
by mass		

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	The only correct answer is \mathbf{A} B is not correct because this is not the correct momomer \mathbf{C} is not correct because this is not the correct momomer D is not correct because this is not the correct momomer	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 1}$ (a)	The only correct answer is A	(1)
	B is not correct because 2,4-dinitrophenylhydrazine does react with X	C is not correct because 2,4-dinitrophenylhydrazine does react with Y
D is not correct because 2,4-dinitrophenylhydrazine does react with Z		

Question Number	Correct Answer	Mark
$\mathbf{1 1 (b)}$	The only correct answer is D	(1)
	A is not correct because W does not react with either B is not correct because X reacts with acidified potassium dichromate(VI) but not Tollens' reagent	C is not correct because Y does not react with either

Question Number	Correct Answer	Mark
$\mathbf{1 1}$ (c)	The only correct answer is D	(1)
	A is not correct only W does not react	
	B is not correct only W does not react	
\mathbf{C} is not correct only W does not react		

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	The only correct answer is B	(1)
	A is not correct has a chiral carbon	
	\mathbf{C} is not correct has a chiral carbon	
D is not correct has a chiral carbon		

(Total for Section A = 20 marks)

Section B

Question Number	Acceptable Answers	Reject	Mark
13(a)			1
	E / V		
	Fe ${ }^{3+}(\mathrm{aq})+\mathrm{e}^{(-)} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq}) \mathrm{c}^{(+0.77} \mathrm{)}$	Incorrect state	
		symbols	
	$\left(\mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}(\mathrm{aq})\right){ }^{\text {a }}+1.36$	1.36	
	ALLOW Single arrow instead of reversible arrows	$\begin{aligned} & \text { without + } \\ & (+) 0.68 / \end{aligned}$	
	Single arrow instead of reversible arrows	$(+) 2.72$	
	IGNORE Missing state symbols		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (i)}$	Zn / Zinc / Zn(s)/Zinc(s)	Zn Zinc(II)	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 3 (b) (i i)}$	$\mathrm{SO}_{3}^{2-}(\mathrm{aq}) /$ sulfate(IV) (ions) / sulfite (ions)	$\mathrm{SO}_{4}^{2-}(\mathrm{aq}) /$ Sulfate(VI) /sulfate	1
	ALLOW $\mathrm{SO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$		
	IGNORE H^{+} missing state symbols		

Question Number	Acceptable Answers	Reject	Mark
13(c)(i)	$+2 / 2+$ This can be scored if there is no answer in the space and V^{2+} is shown as the product in the equation, even if the equation is incorrect ALLOW $\begin{align*} & \mathrm{V}^{2+} /+\mathrm{II} / \mathrm{II}+ \tag{1}\\ & \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{V}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \end{align*}$ Must be a half-equation not a full equation with zinc ALLOW Multiples IGNORE State symbols even if incorrect No TE for equations on incorrect values of	$\begin{aligned} & 2 \text { / II / } \\ & \text { V(II) } \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
13(c)(ii)	M1 (Recognition of oxidation by air) (Vanadium(II) / V ${ }^{2+}$ / Vanadium(III) / $\mathrm{V}^{3+} /$ solution) is oxidised by / reacts with oxygen (in the air) This can be scored if an equation is given showing reaction of V^{2+} or V^{3+} with O_{2} M2 (Formation of V(III) from V(II)) $4 \mathrm{~V}^{2+}+\mathrm{O}_{2}+4 \mathrm{H}^{+} \rightarrow 4 \mathrm{~V}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\begin{equation*} \mathrm{V}^{2+} \rightarrow \mathrm{V}^{3+}+\mathrm{e}^{-} \quad / \mathrm{V}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{V}^{2+} \tag{1} \end{equation*}$ and V^{2+} becomes V^{3+} which is green M3 (Formation of V(IV)) $\begin{equation*} 4 \mathrm{~V}^{3+}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{VO}^{2+}+4 \mathrm{H}^{+} \tag{1} \end{equation*}$ IGNORE State symbols even if incorrect ALLOW $2 \mathrm{~V}^{2+}+\mathrm{O}_{2} \rightarrow 2 \mathrm{VO}^{2+}$ Scores 1 (of M2 and M3) M4 (Calculation of $\mathrm{E}_{\text {cell }}$ values) $\mathrm{E}_{\text {cell }}$ for M 2 equation $=(+) 1.49(\mathrm{~V})$ and $\mathrm{E}_{\text {cell }}$ for M 3 equation $=(+) 0.89(\mathrm{~V})$	V(III) from VO^{2+}	4

Question Number	Acceptable Answers	Reject	Mark
13(c)(iii)	$\mathrm{E}_{\text {cell }}$ is $(+) 0.23(\mathrm{~V})$ so the oxidation of VO^{2+} to VO_{2}^{+}is feasible ALLOW $\mathrm{E}_{\text {cell }}$ is (slightly) positive EITHER the activation energy is too large / kinetically inert OR concentration of oxygen is too low IGNORE Non-standard conditions Mark each as stand alone	Rate is slow	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (b) (i)}$	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{OH}$	1
Ignore names e.g. Anethole			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (b) (i i)}$	Restricted rotation around a carbon- carbon double bond		2
	ALLOW No rotation around a carbon-carbon (1) double bond	Two different groups attached to each carbon (1)	Mark independently

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (c) (i)}$	Propanoyl chloride Ignore formulae as working ALLOW 1-propanoyl chloride	Propanyl chloride	1

Question Number	Acceptable Answers	Reject	Mark
14(c)(ii)	First mark		4
	$\mathrm{RCOCl}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{RCO}^{+}+\mathrm{AlCl}_{4}^{-}$		
	OR		
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-}$		
	ALLOW any acyl chloride or halogenoalkane from (c)(i)		
	Second mark Curly arrow from on or within the circle towards the C of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+} / \mathrm{RCO}^{+}$ ALLOW curly arrow from anywhere within the hexagon ALLOW curly arrow to any part of the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}$ including to the + charge	Curly arrow on or outside the hexagon	
	ALLOW TE for any R group attached to CO^{+} Third mark	hexagon	
	Intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon and some part of the positive charge must be within the horseshoe ALLOW dotted horseshoe	Dotted bonds to H and RCO unless part of a 3-D shape	
	Incorrect orientation of product at this marking point Fourth mark		
	Curly arrow from $\mathrm{C}-\mathrm{H}$ bond to anywhere in the hexagon, reforming the correct delocalised structure (and H^{+})	Curly arrow from H	
	IGNORE any involvement of AlCl_{4}^{-}in the final step Correct Kekulé / skeletal structures score full marks		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 4 (c) (\text { iii) }}$ Lone pair (of electrons) on the oxygen (of the methoxy- group) AND Overlaps with the n / delocalised electrons in the benzene ring / delocalised system OR Feeds into / donates to / interacts with the delocalised electrons / delocalised system / n system of the benzene ring ALLOW Increases the electron density of the (1) benzene ring Making it more susceptible to electrophilic attack / attack by propanoyl cation / RCO 2 ALLOW Making it a better nucleophile Mark each point independently (1)			

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 4 (e) (i)}$ | | Any other
 hydrogens
 labelled | 1 |
| | ALLOW
 Any other unambiguous identification of the
 three hydrogens | | |

| Question
 Number | Acceptable Answers | Reject | Mark | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 4 (e) (i i)}$ | | | | |

Question Number	Acceptable Answers	Reject	Mark
14(f)	(Reduction using) Lithium tetrahydridoaluminate((III)) / Lithium aluminium hydride / Lithal / LiAlH_{4} in (dry) ether ALLOW Sodium tetrahydridoborate((III)) / Sodium borohydride / NaBH_{4} IGNORE Heat / reflux / distillation ALLOW Skeletal formula (Substitution using) PCl_{5} OR $\mathrm{NaCl} / \mathrm{KCl}$ and concentrated / conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ ALLOW $\mathrm{PCl}_{3} / \mathrm{SOCl}_{2} /$ concentrated hydrochloric acid (Substitution using) $\mathrm{PBr}_{3} / \mathrm{P}$ and Br_{2} (giving bromoalkane) (Substitution using) $\mathrm{PI}_{3} /$ (red) P and I_{2} (giving iodoalkane)	Hydrogen and nickel	5

 Or bromo- or iodo- compounds as appropriate (Elimination using) ethanolic / alcoholic / EtOH / alc. sodium/potassium hydroxide AND Heat / boil / heat under reflux Marking consequential on correct intermediates but ALLOW for max 3 a two step synthesis using step 1 as above and then Conc. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3}$ AND Heat / boil / heat under reflux / $170^{\circ} \mathrm{C}$ giving anethole		

Question Number	Acceptable Answers	Reject	Mark		
15(a)(i)	Moles of thiosulfate		2		
	$=21.60 \times 10^{-3} \times 3 \times 10^{-3}$				
$=6.48 \times 10^{-5} / 0.0000648$ (mol) (1)					
Moles of Cu^{2+} in $100 \mathrm{~cm}^{3}=$ moles of					
thiosulfate $\times 10$					
$=6.48 \times 10^{-4} / 0.000648$ (mol) (1)					
If M1 is scored, then there is no					
further attempt, the second mark					
can be scored in (a)(ii)					
Ignore SF except 1 SF					
Correct answer with no working					
scores 2				\quad	(
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a) (i i)}$	Mass of $\mathrm{Cu}=6.48 \times 10^{-4} \times 63.5$		1
	$=0.041148 / 4.1148 \times 10^{-2}(\mathrm{~g})$		
	$=0.041 / 4.1 \times 10^{-2}(\mathrm{~g})$		
	Answer must be to 2 SF		

Question	Acceptable Answers	Reject	Mark
15(b)	First two marks are stand alone		5
	In 0.500 g		
	Mass of water $=0.07(0)$		
	AND		
	$\begin{align*} & \text { Moles of water }=\frac{0.07(0)}{18} \\ & =0.0038889(\mathrm{~mol}) / 3.8889 \times 10^{-3}(\mathrm{~mol}) \tag{1} \end{align*}$		
	$\begin{align*} & n=\frac{\text { moles of water }}{\text { moles of } \mathrm{Cu}^{2+}} \\ & =\frac{0.0038889}{6.48 \times 10^{-4}}=6(.0014) \tag{1} \end{align*}$		
	Method 1 moles of sulfate $=2 \times$ moles of Cu^{2+} $=0.001296 / 1.296 \times 10^{-3}(\mathrm{~mol})$		
	Mass of sulfate $=$ moles of sulfate $\times 96.1$ $\begin{equation*} =0.12455(\mathrm{~g}) \tag{1} \end{equation*}$		
	$\begin{align*} & \text { Mass of } M=0.500-\text { mass of copper - mass } \\ & \text { of sulfate - mass of water } \\ & \qquad=0.500-0.12455-0.070- \\ & =0.26430(\mathrm{~g}) \end{align*}$		
	$\begin{aligned} & \text { Atomic mass of } M=\frac{\text { mass of } M}{\text { moles of } M} \\ & =2 \times \frac{0.264}{6.48 \times 10^{-4}}=203.94 \end{aligned}$		
	So compound is $\mathrm{Tl}_{2} \mathrm{Cu}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$		
	Method 2		

(Total for Question 15 = 8 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i)}$	(2-)aminobutan(e)dioic acid	Answers with dibutan(e) in the name e.g. aminodibutanoic acid	1
	(2-)aminobutan(e)-1,4-dioic acid (2-)aminebutan(e)dioic acid (2-)aminebutan(e)-1,4-dioic acid	IGNORE Punctuation marks (e.g. hyphens, commas, full stops etc) in either version of the answer so for example 2 aminobutandioic acid would score.	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i i)}$			Neutral structure Single negative ion
	ALLOW Structural formulae / displayed formulae e.g. $-\mathrm{OOCCH}_{2} \mathrm{CHNH}_{2} \mathrm{COO}^{-}$	1	

Question Number	Acceptable Answers	Reject	Mark
16(a)(iii)	Diagram ALLOW $\mathrm{NH}_{3}{ }^{+}$ Phenylalanine molecules are held to each other by ionic bonds / strong electrostatic attractions between oppositely charged ions (so high melting temperature) / held in (giant) ionic lattice IGNORE Strong electrostatic attractions between molecules without mention of ionic bonds or between oppositely charged ions Reference to hydrogen bonds	Internal ionic bonds specifically mentioned but assume intermolecular if not specific.	2
Question Number	Acceptable Answers	Reject	Mark
16(b)(i)	Methanol/ $\mathrm{CH}_{3} \mathrm{OH}$		1

Question Number	Acceptable Answers	Reject	Mark
16(b)(ii)	Put spots of the amino acid mixture / hydrolysis products (and known amino acids) AND on a tlc plate / filter paper / chromatography paper AND in a (suitable) solvent / run with a (suitable) solvent ALLOW Labelled diagram Use ninhydrin (to make amino acids visible) ALLOW Iodine vapour in place of ninhydrin Compare distance travelled of mixture components with known amino acids OR Compare R_{f} / formula of R_{f} / description of R_{f} with data book values (1)	Just already separated amino acids Amino acids dissolved in mobile phase solvent just 'paper' Ni as an abbreviation Just 'compare with data book values' Just 'Calculate R_{f} values'	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (b) (i i i)}$	Heat causes hydrolysis OR Amino acids are not sweet ALLOW Decomposition / breakdown / unstable on heating	Just 'cooking' without 'heat'	1
IGNORE Methanol is toxic Changes to flavour without mention of sweetness	Decomposition / breakdown / unstable without heat		

(Total for Question 16 = 10 marks)
(Total for Section $B=50$ marks)

Section C

Question Number	Acceptable Answers	Reject	Mark
17(a)	Two calculations which must be accompanied by a correct statement about toxicity. Several approaches are possible. e.g. Mass of CO released $=0.35 \times 28=9.8(\mathrm{~g})$ Mass per $\mathrm{m}^{3}=\frac{9.8}{200}=0.049(\mathrm{~g}) / 49(\mathrm{mg})$ Which is greater than the toxicity limit OR $\begin{equation*} \text { Max. mass }=43.2 \times 200=8640(\mathrm{mg}) \tag{1} \end{equation*}$ Maximum moles allowed $=\frac{8640}{1000 \times 28}$ $=0.30857143$ Which is less than was released (so not within the limits) OR Max. moles per $\mathrm{m}^{3}=\frac{43.2 \times 10^{-3}}{28}$ $\begin{equation*} =0.0015429 / 1.5429 \times 10^{-3}(\mathrm{~mol}) / \tag{1} \end{equation*}$ 1.5429 (mmol) Moles per m^{3} released $=\frac{0.35}{200}=0.00175(\mathrm{~mol})$ Which is more that the toxicity limit OR Moles per m^{3} released $=\frac{0.35}{200}=0.00175(\mathrm{~mol})$ Mass per m^{3} released $=0.00175 \times 28$ $\begin{equation*} =0.049(\mathrm{~g}) / 4.9 \times 10^{-2}(\mathrm{~g}) / 49(\mathrm{mg}) \tag{1} \end{equation*}$ Which is more than the toxicity limit ALLOW TE only on a suitable attempt at a calculation of mass or moles in M1 Other approaches may be possible		2

Question Number	Acceptable Answers	Reject	Mark
17(b)(i)	If the name of a shape is given award M1 for the name if correct. Do not negate with and incorrect diagram. Trigonal bipyramid(al) ALLOW Pyramidal / bipyramidal if a correct diagram is given ALLOW If no name is given, a three dimensional diagram showing three bonds in plane (straight lines) and two bonds out of plane, either a wedge and dots (which may also be wedged, but ignore the direction of this wedge) or two oppositely directed wedges (one fat at Fe and another fat at CO) One angle labelled 120° and one angle labelled 90°, which may be shown as the symbol ' r '. ALLOW If no other mark has been scored, a diagram with no dots and wedges which has at least one correct 90° and one correct 120° angle scores IGNORE Point of attachment of CO to Fe	Square based pyramids Just 'pyramidal' or 'bipyramidal' Any additional angles which are labelled incorrectly but not the correct 180° angle	2

Question Number	Acceptable Answers	Reject	Mark
17(b)(ii)	Dative covalent bond from C to Fe AND Ione pair on O Triple bond between C and O with one dative covalent bond. ALLOW Crosses for carbon and dots for oxygen Dative covalent bond to Fe , double bond between C and O and two lone pairs on O scores (1) IGNORE Circles for electron shells / lines as well as dots and crosses to show bonds / lone pairs on the Fe		2

Question Number	Acceptable Answers	Reject	Mark
17(c)(i)	Moles of CO $=\underline{4.8}=0.2$ moles		3
	Mass of CO $=0.2 \times 28=5.6 \mathrm{~g}$		
	AND		
	Mass of $\mathrm{Mn}=7.8-5.6 \mathrm{~g}=2.2$		
	Moles of $\mathrm{Mn}=\frac{2.2}{54.9}=0.04007286$		
	Ratio is $0.04: 0.2$ 1 : $5 \quad\left(\mathrm{SoMn}(\mathrm{CO})_{5}\right)$		
	If Ar Mg used instead (24 / 24.3) final answer of $0.091667: 0.2 / 0.090535: 0.2$		
	or 1:2 can score M1 and M2.		
	ALLOW		
	TE for incorrect mass of manganese in M2 for ratio M3.		

Question Number	Acceptable Answers	Reject	Mark
17(c)(ii)	Empirical formula mass $=194.9$ $390=2 \times 194.9$ so molecular formula $=\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ ALLOW Just $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ without working or a structure with 2 Mn and 10 CO ALLOW Any sensible structure of two Mn and ten CO covalently bonded at any angle to each other IGNORE Connectivity of the CO group		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (d) (i)}$	Sulfuric acid is a catalyst IGNORE Sulfuric acid / H		
	Hydrogen is an electrophile (reacts with 2- methylpropene and) is regenerated at the end / in the last step of the reaction / takes part in the reaction but is still present at the end	Just 'sulfuric acid is chemically unchanged after the reaction' 'Not participating in the overall reaction'	2
M2 dependent on M1.	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (d) (i i i)}$	Sulfuric acid is corrosive	Just cost	1
	OR		
	Difficult to recover the sulfuric acid IGNORE Irritant Burns skin / toxic / discussion of yield		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (e)}$	The (two) reactants are / carbon monoxide is adsorbed onto the surface / active sites of the (1) catalyst The activation energy for the reaction is lowered / bonds are weakened in the reactant molecules (1)	absorbed	3
	The products are desorbed from / diffuse from / leave the catalyst		

(Total for Question 17 = 20 marks) (Total for Section $C=20$ marks) Total for Paper $=90$ marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

