Mark Scheme (Results)

Summer 2018

Pearson Edexcel International Advanced Level
In Chemistry (WCH06)
Chemistry Laboratory Skills II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WCH06_01_1806_MS*
All the material in this publication is copyright
(C) Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	$\mathrm{Fe}^{3+} /\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ Mn^{2+}	1
	ALLOW Fe^{+3} IGNORE State symbols, even if incorrect Incorrect number of water ligands		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i)}$	$\mathrm{Fe}(\mathrm{OH})_{3}$ OR $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ ALLOW TE on incorrect cation from (a)(i) Ligands in any order Incorrect number of water ligands	$\mathrm{Fe}(\mathrm{OH})_{3}{ }^{+}$	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (\text { iii) }}$	Iodine/ $\mathrm{I}_{2} / \mathrm{I}_{3^{-}}$	$\mathrm{I}, \mathrm{FeI}_{3}, \mathrm{I}^{-}$	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i v)}$	Silver nitrate (solution) / $\mathrm{AgNO}_{3}((\mathrm{aq}))$ ALLOW $\mathrm{Ag}^{+}((\mathrm{aq}))$ IGNORE Subsequent tests e.g. addition of ammonia		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (v)}$	Effervescence / bubbles (of colourless gas)/ fizzing	Coloured gases	1
IGNORE Gas is evolved Carbon dioxide forms Gas turns limewater cloudy Solid disappears Formation of precipitate	Other gases		

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	Mark the three parts of this item independently. Observation: (pale /dark) green ALLOW for M2 and M3 Ligands in any order Incorrect number of water ligands Inference: (precipitate) $\mathrm{Fe}(\mathrm{OH})_{2} / \mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ (Cation) $\begin{equation*} \mathrm{Fe}^{2+} /\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \tag{1} \end{equation*}$ Allow TE only on Cr^{6+} in (a)(i) and Cr^{3+} in (b)(i) in which case all three marks may be awarded: green / blue-green (1) $\mathrm{Cr}(\mathrm{OH})_{3}(1)$ Cr^{3+} (1)	Blue-green $\begin{equation*} \mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{4} \tag{1} \end{equation*}$	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i i)}$	Mark independently	FeO	1
	$\mathrm{Fe}(\mathrm{OH})_{3}$		
OR			
	$\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ ALLOW $\mathrm{Fe}_{2} \mathrm{O}_{3}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c)}$	$\mathbf{2 F e}{ }^{\mathbf{3 +}}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{2 \mathbf { F e } ^ { 2 + } + \mathrm { SO } _ { 4 } { } ^ { 2 - } + \mathbf { 4 } \mathrm { H } ^ { + }}$		1
OR			
	Use of hydrated ions (e.g. $2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\left.2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\right)$ in equation IGNORE State symbols even if incorrect.		

(Total for Question 1 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)	Sodium hydrogencarbonate / NaHCO (solution)	Strong alkalis	1
ALLOW KHCO Sodium bicarbonate Sodium carbonate/ $\mathrm{Na}_{2} \mathrm{CO}_{3}$ Potassium carbonate $/ \mathrm{K}_{2} \mathrm{CO}_{3}$ IGNORE ice cold water			

Question Number	Acceptable Answers	Reject	Mark
2(b)	When half of the reaction mixture has been pipetted into the quenching solution	1	
ALLOW Immediately after the all solution has been transferred (to the quenching solution)		1	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i)}$	$0.01(00)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ If given, units must be correct		1

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	M1 Mol thiosulfate $=1.85 \times 10^{-4}$ M2 Mol I_{2} in sample $=\frac{\left(1.85 \times 10^{-4}\right)}{2}=9.25 \times 10^{-5}$ Concentration $\mathrm{I}_{2}=\left(9.25 \times 10^{-5}\right) \times 100$ $\begin{equation*} =9.25 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \tag{1} \end{equation*}$ TE on M1 ALLOW Alternative method for calculating iodine concentration with correct answer for (2) M3 $\begin{equation*} \text { Rate of change }=\frac{\left(0.01-9.25 \times 10^{-3}\right)}{70} \tag{1} \end{equation*}$ M4 This mark depends on the use of a time in M3. rate $=1.07143 \times 10^{-5}=1.07 \times 10^{-5}$ and $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$ TE on (c)(i) and M2 ALLOW $\mathrm{mol} \mathrm{dm}{ }^{-3} / \mathrm{s}$ IGNORE SF except 1	$\left.\left.\left[\mathrm{I}_{2}\right)\right]_{\mathrm{i}}<\left[\mathrm{I}_{2}\right)\right]_{\mathrm{t}}$	4

Answer to $(\mathrm{c})(\mathrm{i})$	Answer to M3, including unit	Mark for $(\mathrm{c})(\mathrm{ii})$
0.01	$\frac{9.25 \times 10^{-3}}{70}=1.32 \times 10^{-4}$	3
0.05	$\frac{(0.01 \text { not used) }}{\left(0.05-9.25 \times 10^{-3}\right)} 7=\frac{0.0408}{70}=5.82 \times 10^{-4}$	4
0.02	$\frac{\left(0.02-9.25 \times 10^{-3}\right)}{70}=\frac{0.0108}{70}=1.54 \times 10^{-4}$	4
0.5	$\frac{\left(0.5-9.25 \times 10^{-3}\right)}{70}=\frac{0.491}{70}=7.01 \times 10^{-3}$	4
0.25	$\frac{\left(0.25-9.25 \times 10^{-3}\right)}{70}=\frac{0.241}{70}=3.44 \times 10^{-3}$	4

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 (c) (\text { iii) }}$	Iodine concentration does not affect rate OR rate equation is zero order wrt iodine ALLOW Iodine (concentration) does not appear in the rate equation	zero order wrt thiosulfate	(1)	
(Diagram shows that the) rate is constant	(1)	Because the gradient is zero	Just 'gradient is constant'	

Question Number	Acceptable Answers	Reject	Mark
2(c)(iv)	Straight line with less negative gradient, starting from same point as the original		1
		New line	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (v)}$	These marks are stand alone The rate is half of the value in the original experiment ALLOW The gradient of the line is half of the value in the original experiment (1) IGNORE Rate / gradient would be lower	Rate constant changes	2
The reaction is first order wrt propanone OR The rate is proportional to the concentration of propanone (1) IGNORE Propanone is in the rate equation			

Question Number	Acceptable Answers (1)	Reject	Mark
2(d)	Starch indicator Added when pale yellow / straw coloured ALLOW added just before the end-point (1) End-point is blue-black / blue / black to colourless (1)	At the end- point	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a)}$	(dilute) sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$	Just H hydrochloric acid nitric acid concentrated sulfuric acid	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b)}$	A salt bridge ALLOW (Strip of) filter paper OR inverted U-tube containing gel (1)	pH paper	2
(saturated) potassium nitrate solution/ KNO OR ORdium nitrate solution/ NaNO_{3} (1)	$\mathrm{NaCl} / \mathrm{KCl} / \mathrm{NaBr}$ $\mathrm{KBr} / \mathrm{NaI} / \mathrm{KI}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i)}$	M1 For direction of electron flow e.g. electrons flow to the positive side OR from left to right OR to the KMnO4 side		2
ALLOW KMnO_{4} side is cathode			
M2 Reduction occurs at the right-hand electrode OR Potassium manganate(VII) gains electrons and Potassium manganate(VII)/ manganate(VII) ions stronger oxidising agent	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i i)}$	$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{(-)} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$		1
	ALLOW Multiples Reverse equation if answer to (c)(i) is potassium dichromate		

Question Number	Acceptable Answers	Reject	Mark
3(d)	becomes more orange/ less green / less brown	Anything purple	1
	ALLOW Green to orange IGNORE "dark" or "light" before colour	Orange to green Green to yellow Just one colour (not a change)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (e)}$	Ion concentration(s) / solution(s) should be $1.00 \mathrm{~mol} \mathrm{dm}^{-3} / 1$ Molar/ 1 M OR Mixing (equal volumes of) two solutions each 2.00 mol dm	Answer implying only one compound needs to be 1 M	1
	ALLOW 'concentration $=1.00 \mathrm{~mol} \mathrm{dm}^{-3 \prime}$ 'ion concentration $=1.00 \mathrm{~mol} \mathrm{dm}^{-3 \prime}$		
	IGNORE $\left[\mathrm{H}^{+}\right]=8.00$ mol $\mathrm{dm}^{-3} / 1.00 \mathrm{~mol} \mathrm{dm}^{-}$ 3 if others are $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ Pressure $/$ temperature		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (f) (i)}$	Penalise use of mauve/violet/lilac once only in (f)(i) and (ii) Remains purple ALLOW Paler purple due to dilution	Just "no change" Mauve/violet/ lilac/pink	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (f) (i i)}$	Goes from colourless to purple	very pale pink as the starting colour	1
ALLOW			
from colourless to (pale) pink	(to) mauve/violet/ lilac / brown		

Question Number	Acceptable Answers	Reject	Mark
4(a)	Method 1 Add bromine (solution) / Br_{2} White precipitate (with 2-hydroxybenzoic acid) OR Bromine is decolorised IGNORE Medicinal smell Method 2 Add (neutral) iron(III) chloride solution/ ferric chloride / FeCl_{3} Red/ blue / green / purple violet colour (1) Method 3 Add ethanoyl chloride/ an acyl chloride ALLOW Add named carboxylic acid and a strong acid Characteristic smell / steamy fumes ALLOW Fruity / medicinal smell Observation mark if carboxylic acid but no strong acid	Testing with PCl_{5} Na $\mathrm{Na}_{2} \mathrm{CO}_{3}$ NaOH $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	2

Question Number	Acceptable Answers	Reject	Mark
4(b)(i)	(Very) flammable and corrosive Inflammable and corrosive	Extra answers eg flammable and oxidising/ Corrosive and acidic	1

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	Mol 2-hydroxybenzoic acid $=2.0 / 138$ $=0.0144928 / 0.0145 / 0.014 \quad(1)$ Mass ethanoic anhydride $=(0.0144928) \times$ 102 $=1.47826087 / 1.48 / 1.5(\mathrm{~g})$ $\underline{2.0 \times 102}=1.48(\mathrm{~g})$ scores (2) 138	2	
IGNORE SF except 1SF Intermediate rounding if final answer is correct			

Question Number	Acceptable Answers	Reject	Mark
4(b)(iii)	Mass ethanoic anhydride (= $4 \times 1.08)$ $=4.32 \mathrm{~g}$ (greater than 1.48 so excess) OR 1.48 g of ethanoic anhydride $=(1.48 / 1.08)=1.37 \mathrm{~cm}^{3}$ $\left(\right.$ less than $4.0 \mathrm{~cm}^{3}$ so excess)	1	
	OR Mol ethanoic anhydride $=(4.32 / 102)$ $=0.0424$ Mol 2-hydroxybenzoic acid $=(2 / 138)$ $=0.0145$ (less than ethanoic anhydride) IGNORE Extra calculation showing how much is excess		

Question Number	Acceptable Answers	Reject	Mark
4(b)(iv)	Final answer will depend on rounding of intermediate steps. Most rounding leads to answers between 65 and 65.4\% Correct answer without calculation shown scores 2 $\begin{align*} & \text { Mol aspirin }=1.70 / 180= \\ & 9.444 \times 10^{-3} \tag{1}\\ & \% \text { yield }=\left(9.444 \times 10^{-3} \times 100\right) / \\ & 0.0144927 \\ & =65.1669 / 65.2 / 65 \% \end{align*}$ ALLOW $\begin{align*} \% \text { yield } & =\left(9.4 \times 10^{-3} \times 100\right) / 0.014 \\ & =67 \% \tag{1} \end{align*}$ OR $\begin{align*} & \text { Max yield }=\frac{2.00 \times 180}{138}=2.608696 \mathrm{~g} \\ & \% \text { Yield }=\frac{1.7 \times 100}{2.608696} \\ & =65.1666 / 65.2 / 65 \tag{1} \end{align*}$ Ignore SF except 1 SF TE except yield > 100\%	$\begin{aligned} & (1.7 \times 100) / 2 \\ & =85 \% \end{aligned}$ $\begin{aligned} & \frac{2 \times 100}{2.6} \\ & =77 \% \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
4(b)(v)	The correct answer may be shown on the diagram. Top of condenser should not be sealed (so thermometer must be removed)	Move thermometer closer to liquid level	2
	ALLOW Thermometer must be removed OR Thermometer should be in water bath	IGNORE There is nowhere for gas to escape OR Thermometer not needed for reflux	(1)

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left(^{+}\right)$ ALLOW Atoms in any order IGNORE Benzene ring connected to O^{+}if apparently rough work for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left({ }^{+}\right)$	Structural/ skeletal formulae Incorrect charge(s) $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{2+} \\ & \left.\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{C}^{+}\right) \\ & \left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}{ }^{+}\right) \\ & \left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}^{+}\right) \\ & \mathrm{C}_{5} \mathrm{O}_{2}\left(^{+}\right) \\ & \hline \end{aligned}$	1

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	Circles round H in OH and each H in CH_{3} ALLOW OH and CH_{3} completely circled		1

(Total for Question 4 = 15 marks)
TOTAL MARKS FOR PAPER $=50$ MARKS

