| Surname | Other | names | | | | | | | | | |--|-----------------|--------------------------|--|--|--|--|--|--|--|--| | Pearson Edexcel International Advanced Level | Centre Number | Candidate Number | | | | | | | | | | Chemistry Advanced Unit 6: Chemistry Laboratory Skills II | | | | | | | | | | | | Unit 6: Chemistry Lak | boratory Skills | II | | | | | | | | | | Unit 6: Chemistry Lak Monday 13 November 201 Time: 1 hour 15 minutes | | Paper Reference WCH06/01 | | | | | | | | | ## Instructions - Use **black** ink or **black** ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. # Information - The total mark for this paper is 50. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - Show all your working in calculations and include units where appropriate. Turn over ▶ P50790A DO NOT WRITE INTHIS AREA DO NOT WRITE IN THIS AREA # Answer ALL the questions. Write your answers in the spaces provided. - 1 Compound **A** is an ionic, crystalline solid containing two cations and one anion. Compound **A** dissolves in warm water to form a green solution, **B**. - (a) Give the **formulae** of two cations which could be responsible for the green colour of solution **B**. (2) - (b) When aqueous sodium hydroxide is added to solution **B**, a green precipitate forms. When excess aqueous sodium hydroxide is added, this precipitate dissolves to form a different green solution, **C**. - (i) Give the **formula** of the cation in solution **B** identified by this test. (1) (ii) Give the **formula** of the anion responsible for the green colour in solution **C**. (1) - (c) The green solution **C** is divided into two portions. - (i) When aqueous hydrogen peroxide is added to the first portion of solution **C**, a yellow solution is formed. Give the **name**, including the relevant oxidation number, of the ion responsible for the yellow colour. (1) 2 DO NOT WRITE IN THIS AREA | | n the second portion of solution C is heated, a gas is produced that turns p red litmus paper blue. | | |-------------|---|------| | | tify, by name or formula, the gas produced and write the ionic equation s formation. State symbols are not required. | (2) | | Gas | | | | lonic | equation | lute hydrochloric acid, followed by aqueous barium chloride, is added to B , a white precipitate forms. | | | Identify, | by name or formula, the white precipitate formed. | (1) | | | | () | | (e) Suggest | the formula of compound A . Ignore any water of crystallisation. | (1) | | | | | | | (Total for Question 1 = 9 ma | rks) | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA - 2 Two **neutral** organic compounds, **D** and **E**, contain the elements carbon, hydrogen and oxygen only. - (a) Use this information, and the observations of the two tests on compound **D**, to complete the table. | | Test | Observations | Inferences | | | | | | |------|---|---|--|--|--|--|--|--| | (i) | Add a spatula measure of phosphorus(V) chloride to D | hosphorus(V) chloride turn damp blue litmus paper red | | | | | | | | | | | The group present in D is | | | | | | | | | | (2) | | | | | | | (ii) | Add a few drops of D to acidified potassium dichromate(VI) solution and heat the mixture | The solution stays orange | State what additional information this gives about the structure of D | | | | | | | | | | (1) | | | | | | (b) The mass spectrum of compound **D** has the molecular ion peak at m/e = 74. Draw the **displayed** formula of compound **D**. (1) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (c) The results of two tests on compound **E** are shown in the table. Complete the table. | Test | Test Observation | | | | | | | | |---|-----------------------------|---|--|--|--|--|--|--| | (i) Add a few drops of E to a solution of 2,4-dinitrophenylhydrazine | An orange precipitate forms | The functional group in E could be | | | | | | | | | | (1) | | | | | | | | (ii) Add a few drops of E to Fehling's solution and heat the mixture | Solution stays blue | The name of the functional group in E is | | | | | | | | | | (1) | | | | | | | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (d) (i) **E** could be one of two **unbranched** isomers, each containing five carbon atoms per molecule. Use this information, and the results of tests (c)(i) and (c)(ii), to suggest the structure of each isomer. (2) | lsomer 1 | lsomer 2 | |---|-----------------------------------| (ii) State the reagents that could be used in two isomers identified in (d)(i). | a test to distinguish between the | | Describe the observations that you wou | | | | (3) | | Reagents | | | Observations in test with | | | isomer 1 | | | | | | isomer 2 | | | | | | | (Total for Question 2 = 11 marks) | | | · • | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA **3** Aqueous hydrogen peroxide is a colourless solution which decomposes slowly at room temperature to form water and oxygen. $$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$ The concentration of hydrogen peroxide can be expressed as 'x volume', where 1 cm³ of hydrogen peroxide solution decomposes to produce x cm³ of oxygen at room temperature and pressure. A bottle of aqueous hydrogen peroxide is labelled '20 volume'. (a) Calculate the concentration of 20 volume hydrogen peroxide in mol dm⁻³. [Molar volume of oxygen at room temperature and pressure = $24.0 \text{ dm}^3 \text{ mol}^{-1}$] (3) - (b) A student carried out a titration to check the accuracy of this concentration by following the procedure outlined below. - Step **1** Use a pipette, fitted with a pipette filler, to transfer 10.0 cm³ of the aqueous hydrogen peroxide to a 250 cm³ volumetric flask. - Step 2 Make up the solution to the mark with distilled water. - Step 3 Fill a burette with 0.0200 mol dm⁻³ potassium manganate(VII) solution. - Step **4** Use a pipette, fitted with a pipette filler, to transfer 25.0 cm³ of the **diluted** hydrogen peroxide solution to a conical flask. Add approximately 25 cm³ of dilute sulfuric acid to the flask and titrate the mixture with the potassium manganate(VII) solution. - Step 5 Repeat the titration until concordant results are obtained. DO NOT WRITE IN THIS AREA | uld do to the pipette before using it to measure ep 1. (1) | |---| | uld do to the diluted hydrogen peroxide solution sing it. | | e that the student should make before taking the ep 4 . cal, securely clamped and in good working order. | | dent should use to measure approximately 25 cm ³ o 4 . | | he end point of the titration. (1) | | the term concordant results in titrations. | | | | | | | | to | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (vii) The mean titre of the 0.0200 mol dm⁻³ potassium manganate(VII) solution was 15.80 cm³. Using information from the procedure and the value of the mean titre, calculate the concentration in mol dm^{-3} of the **original** hydrogen peroxide solution used in Step 1. The equation for the reaction is $$2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$$ (4) (c) The uncertainty in each burette reading is $\pm 0.05 \, \text{cm}^3$. Calculate the percentage uncertainty in a titre of 15.80 cm³. (1) (d) Suggest the reason why the concentration of a 20 volume solution of hydrogen peroxide decreases, over a period of time. (1) (Total for Question 3 = 15 marks) WRITE IN THIS AREA NOT | 4 | There are two esters with the formul | a $C_6H_5COOC_3H_7$, | which contain | a phenyl | group | |---|--------------------------------------|-----------------------|---------------|----------|-------| |---|--------------------------------------|-----------------------|---------------|----------|-------| - (a) One of the esters, labelled **X**, was used to prepare a sample of pure benzoic acid using the following procedure. - Step 1 Place 3.0 cm³ of **X**, 10 cm³ of dilute sodium hydroxide solution and 10 cm³ of ethanol in a pear-shaped flask. - Step 2 Heat the mixture in the flask, under reflux, for 20 minutes. - Step 3 Pour the contents of the flask into a beaker and place the beaker in an ice bath. - Step 4 Add 5 drops of methyl orange indicator to the beaker and stir the solution. - Step **5** Add 1 cm³ portions of dilute hydrochloric acid to the mixture in the beaker until the solution is acidic. Benzoic acid forms as a solid. - Step 6 Filter the benzoic acid under reduced pressure. - Step 7 Recrystallise the benzoic acid using water as the solvent. - Step 8 Weigh the dry benzoic acid crystals obtained. - (i) Suggest a reason for adding ethanol to the mixture of ester **X** and dilute sodium hydroxide solution in Step **1**. | (| 1 |) | | |---|---|---|--| | | | | | | | | | | | | | | | | (ii) | Explain | why the | mixture is | heated | under | reflux ir | 1 Step 2 | |------|---------|---------|------------|--------|-------|-----------|-----------------| |------|---------|---------|------------|--------|-------|-----------|-----------------| | | _ | |---|----| | 1 | 73 | | | // | | | | Reason for heating # Reason for refluxing DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (iii) Label the diagram of the apparatus used to filter the benzoic acid under reduced pressure in Step **6** and give a reason why this type of filtration is used rather than normal filtration. (3) Reason (iv) Describe the **first** stage in the recrystallisation process in Step **7**. (1) (v) Calculate the percentage yield of benzoic acid, C₆H₅COOH, in a preparation in which 1.45 g of benzoic acid is prepared from 3.0 cm³ of **X**, C₆H₅COOC₃H₇. [The density of \mathbf{X} is 1.02 g cm⁻³.] (4) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA (b) Complete the structures of the two esters with the formula $C_6H_5COOC_3H_7$, showing clearly the structure of the C_3H_7 groups. (2) (c) The part of the high resolution proton nmr spectrum of \mathbf{X} corresponding to the C_3H_7 group consists of two peaks, P and Q. Peak P is split into seven. Peak Q is a doublet. Draw the structure of **X** and label the protons responsible for peaks P and Q. (2) (Total for Question 4 = 15 marks) **TOTAL FOR PAPER = 50 MARKS** DO NOT WRITE IN THIS AREA # The Periodic Table of Elements 0 (8) 9 | _ | _ | | | |------|---------------|------|----------------------|---------------|-----------|------------------------|------|----|------------------|------|----|-------------|----|-------|--------------|-----------------------|-------|-----|-----------------|-------|---|--------------------------------------| | (18) | He helium | 2 | 20.2 | Se | neon | 10 | 39.9 | Ar | argon
18 | 83.8 | ᅔ | krypton | 36 | 131.3 | Xe | xenon
54 | [222] | Æ | radon
86 | | ted | | | | | (17) | 19.0 | ட | fluorine | 6 | 35.5 | บ | chlorine
17 | 79.9 | Ŗ | bromine | 35 | 126.9 | Τ | iodine
53 | [210] | At | astatine
85 | | een repor | | | | | (16) | 16.0 | 0 | oxygen | .∞ | 32.1 | S | sulfur
16 | 79.0 | Se | selenium | 34 | 127.6 | <u>م</u> | tellurium
52 | [209] | 8 | polonium
84 | | 116 have b | iticated | | | | (15) | 14.0 | z | nitrogen | 7 | 31.0 | ۵ | phosphorus
15 | 74.9 | As | arsenic | 33 | 121.8 | Sb | antimony
51 | 209.0 | Bi | bismuth
83 | | nbers 112- | but not fully authenticated | | | | (14) | 12.0 | U | carbon | 9 | 28.1 | Si | | 72.6 | g | germanium | 32 | 118.7 | Sn | ţi. | 207.2 | Pb | lead
82 | | atomic nur | but not fi | | | | (13) | 10.8 | В | boron | 5 | 27.0 | ¥ | aluminium
13 | 69.7 | Ga | gallium | 31 | 114.8 | Ч | indium
49 | 204.4 | F | thallium
81 | | Elements with atomic numbers 112-116 have been reported | | | | | • | | | | | | | (12) | 65.4 | Zu | zinc | 30 | 112.4 | 5 | cadmium
48 | 200.6 | ğ | mercury
80 | | | | | | | | | | | | | | (11) | 63.5 | J | copper | 29 | 107.9 | Ag | silver
47 | 197.0 | Αn | plog
79 | [272] | Rg | oentgenium
111 | | | | | | | | | | | (10) | 58.7 | 'n | nickel | 28 | 106.4 | Pd | palladium
46 | 195.1 | £ | platinum
78 | [271] | Ds | m meitnerium damstadtium roentgenium | | | | | | | | | | | (6) | 58.9 | ပိ | cobalt | 27 | 102.9 | 格 | rhodium
45 | 192.2 | Ţ | iridium
77 | [268] | Mt | meitnerium
109 | | 1.0 | H
hydrogen | - | | | | | | | (8) | 55.8 | Fe | iron | 76 | 101.1 | Ru | ruthenium
44 | 190.2 | ŏ | osmium
76 | [277] | Hs | hassium
108 | | | | _ | | | | | | | (2) | 54.9 | ٧ | m manganese | 25 | [86] | ည | technetium
43 | 186.2 | Re | rhenium
75 | [264] | Bh | bohrium
107 | | | | | mass | pol | | umber | | | (9) | 52.0 | ъ | chromium | 24 | 62.6 | Wo | molybdenum technetium | 183.8 | > | tungsten
74 | [366] | Sg | seaborgium
106 | | | : | Key | relative atomic mass | atomic symbol | name | atomic (proton) number | | | (2) | 50.9 | > | vanadium | 23 | 6.26 | g | niobium
41 | 180.9 | Ta | tantalum
73 | [292] | DP | dubnium
105 | | | | | relati | ato | | atomic | | | 4 | 47.9 | ï | titanium | 22 | 91.2 | Zr | zirconium
40 | 178.5 | Ħ | _ | | Rf | rutherfordium
104 | | | | | | | | | | | (3) | 45.0 | Sc | scandium | 21 | 88.9 | > | yttrium
3 9 | 138.9 | La* | lanthanum
57 | [227] | | actinium
89 | | | | (2) | 0.6 | Be | beryllium | 4 | 24.3 | W | magnesium
12 | 40.1 | Ca | calcinm | 20 | 9.78 | Ş | strontium
38 | 137.3 | Ba | _ | | Ra | radium
88 | | | | (1) | 6.9 | ב | lithium | 3 | 23.0 | Na | sodium
11 | 39.1 | ¥ | potassium | 19 | 85.5 | & | rubidium
37 | 132.9 | ప | caesium
55 | [223] | F | francium
87 | * Lanthanide series * Actinide series | ted | | | | | | | |---|--------------------|--------------------|-------|----|--------------|-----| | Elements with atomic numbers 112-116 have been reported but not fully authenticated | 175 | lutetium
71 | [257] | ڐ | lawrencium | 103 | | | 173
X | ytterbium
70 | [254] | ž | nobelium | 102 | | | 169
Tm | thulium
69 | [526] | Þ₩ | mendelevium | 101 | | | 167
Fr | erbium
68 | [253] | F | fermium | 100 | | | 165
Ho | holmium
67 | [254] | ES | einsteinium | 99 | | | 163
D V | dysprosium
66 | [251] | უ | californium | 98 | | Rg roentgenium | 159
T b | terbium
65 | [245] | 쓙 | berkelium | 62 | | DS
damstadtium
110 | 157
Gd | gadolinium
64 | [247] | Ę | curium | 96 | | Mt
Mt
meitnerium
109 | 152
Fu | europium
63 | [243] | Αm | americium | 95 | | HS
hassium
108 | 150
Sm | samarium
62 | [242] | Pu | plutonium | 94 | | Bh
bohrium
107 | [147]
Pm | promethium
61 | [237] | δ | neptunium | 93 | | Sg
seaborgium
106 | 44 Z | neodymium
60 | 238 | _ | uranium | 92 | | Rf Db sm nutherfordium dubnium se 104 | 14 P | praseodymium
59 | [231] | Pa | protactinium | 91 | | Rf
nutherfordium
104 | ر
140
140 | cerium
58 | 232 | ᆮ | thorium | 90 | | . *Jinim 6 | | | | | | | 7