## GCE

## Physics A

Unit G482: Electrons, Waves and Photons
Advanced Subsidiary GCE

## Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

## Annotations

| Annotation | Meaning |
| :---: | :---: |
| BOD | Benefit of doubt given |
| CON | Contradiction |
| $\checkmark$ | Incorrect response |
| ECF | Error carried forward |
| FT | Follow through |
| NAQ | Not answered question |
| NBOD | Benefit of doubt not given |
| POT | Power of 10 error |
| $\wedge$ | Omission mark |
| RE | Rounding error ONLY APPLIED ONCE IN THE PAPER; also use as Repeated error |
| SF | Error in number of significant figures ONLY APPLIED ONCE IN THE PAPER |
| $\checkmark$ | Correct response |
| AE | Arithmetic error |
| 2 | Wrong physics or equation |
| 1 | alternative and acceptable answers for the same marking point |
| (1) | Separates marking points |
| reject | Answers which are not worthy of credit |


| Annotation | Meaning |
| :---: | :--- |
| not | Answers which are not worthy of credit |
| IGNORE | Statements which are irrelevant |
| ALLOW | Answers that can be accepted |
| ( ) | Words which are not essential to gain credit |
| - | Underlined words must be present in answer to score a mark |
| ecf | Error carried forward |
| AW | Alternative wording |
| ORA | Or reverse argument |

## Subject-specific Marking Instructions

## CATEGORISATION OF MARKS

The marking scheme categorises marks on the MABC scheme
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular $\mathbf{M}$-mark, then none of the dependent $\mathbf{A}$ marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a $\mathbf{C}$ mark and the candidate does not write down the actual equation but does correct working which shows that the candidate knew the equation, then the $\mathbf{C}$-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

## Note about significant figures:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.
Please put a tick for every mark awarded in the body of the text at the point where the mark is given.

| Question |  | Answer | M |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | a | i | $\mathrm{P}=\mathrm{VI}$ <br> $\mathrm{I}=60 / 230=0.26(\mathrm{~A})$ | C 1 <br> A 1 | allow 0.261 , etc. |


| Question |  |  | Answer | M | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  |  |  |  |
|  | a | i | $\begin{aligned} & I_{1}=V / R \\ & I_{1}=120 / 750=0.16(A) \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$ | allow V = IR |
|  |  | ii | $\begin{aligned} & \mathrm{I}_{2}=0.40-0.16(=0.24) \\ & 0.24(320+R)=120 \\ & R=180(\Omega) \end{aligned}$ | $\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$ | ecf ai but not if $I_{2}<0$ or $I_{2}=I_{1}$. <br> alt $R_{\text {tot }}=300 ; 1 / 300=1 / 750+1 /(320+R)$ |
|  | b | i | $\begin{aligned} & V_{X}=0.16 \times 500=80.0 ; V_{Y}=0.24 \times 320=76.8 \\ & V_{X Y}=3.2(V) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | ecf a; allow $0.16 \times 250=40 ; 0.24 \times 180=43.2$ |
|  |  | ii | $I_{1}$ is unchanged as same resistance across supply/AW $\mathrm{I}_{2}$ increases as (branch) resistance falls (and supply p.d. is constant)/AW <br> $V_{X Y}$ decreases as p.d. across $320 \Omega$ increases or potential at $Y$ increases (and p.d. at $X$ is constant) | M1 <br> M1 <br> A1 | no M mark without justification <br> ignore $M$ status of marks above if $I_{1}$ is unchanged and $\mathrm{I}_{2}$ increases have been stated |
|  | C | i | correct symbol | B1 |  |
|  |  | ii1 | $\begin{aligned} & \mathrm{R}_{200}=575 \Omega ; \mathrm{R}_{220}=445 \Omega \\ & \mathrm{I}_{200}=0.21 \mathrm{~A} ; \mathrm{I}_{220}=0.27 \mathrm{~A} \\ & \text { so } \Delta \mathrm{I} / \Delta \theta=0.06 / 20\left(=3 \mathrm{~mA} \mathrm{~K}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | tolerance $\pm 5 \Omega$; allow $255 \Omega$ and $125 \Omega$ for 1 mark using I = 120/R accept answers which become $3 \mathrm{~mA} \mathrm{~K}^{-1}$ to 1 SF |
|  |  | ii2 | $\begin{aligned} & \Delta \mathrm{V} / \Delta \theta=320 \Delta \mathrm{I} / \Delta \theta \\ & \Delta \mathrm{V} / \Delta \theta=320 \times 0.003=0.96\left(\mathrm{~V} \mathrm{~K}^{-1}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$ | $\mathrm{V}_{\mathrm{Y} 200}=67.2 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{XY} 200}=12.8 \mathrm{~V}$; $\mathrm{V}_{\mathrm{Y} 220}=86.4 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{XY} 220}=-6.4 \mathrm{~V}$ giving $\Delta \mathrm{V} / \Delta \theta=19.2 / 20$ accept ecf cii1 $\times 320$ |
|  |  | ii3 | fsd of ammeter must be 300 mA so $1 / 100$ of fsd change per K/AW <br> fsd for voltmeter can be $\pm 10 \mathrm{~V}$ so $1 / 10$ of fsd change per K/AW so measurement of $\mathrm{V}_{\mathrm{XY}}$ better | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { A0 } \end{aligned}$ | allow one mark for a simpler/qualitative answer which contrasts the ability to detect a small temperature change using an ammeter or voltmeter. |
|  |  | $\bullet$ | - Total question 2 | 17 |  |


| Question |  | Answer | M | Guidance |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | (a) | (i) | energy transferred from source/changed from some form to <br> electrical energy; <br> per unit charge (to drive charge round a complete circuit) | M1 | A1 |



| Question |  |  | Answer | M | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |
|  | a |  | travel through a vacuum and/or at the speed of light c or are caused by accelerating charges | B1 |  |
|  | b |  | B are X-rays $F$ are microwaves | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$ | if answers are reversed score 1 mark |
|  | C | i | 1 Reflected sunbeam/light is (partially plane) polarised <br> 2 Light transmitted by the filter will vary between max and min <br> 3 Two max \& min per rotation <br> 4 Max with axis of transmission of filter parallel to glass plate <br> 5 because amplitude of light in plane of glass unaffected by reflection <br> 6 Min with axis of transmission of filter in plane of light beam 7 because amplitude of light perpendicular to plane of glass is diminished | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | max 4 marks from 7 marking points one of which (QWC) must be 4 or 6 |
|  |  | ii | Polaroid sunglasses reduce glare (reflected sunlight from sea/surfaces) or ground acts like glass plate in Fig. 5.2 (so) axis of transmission of (lens) filter in plane of light beam or in direction to minimise light reaching eye from glare/reflection | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$ |  |
|  | d | i | UV-B is more energetic/shorter wavelength than UV-A UV-C is absorbed by the atmosphere (so does NOT reach the skin) | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | accept any two suitable statements allow one mark out of two for $\mathbf{A}$ and $\mathbf{C}$ reversed |
|  |  | ii | filters out/blocks/reflects/absorbs UV(-B) | B1 | allow chemicals prevent sunburn/skin cancer not stops UV penetrating skin |
|  | e |  | $\begin{aligned} & \text { energy }=\mathrm{eV}=1.6 \times 10^{-19} \times 500=8.0 \times 10^{-17} \mathrm{~J} \\ & 1 / 2 \mathrm{mv} \mathrm{v}^{2}=8.0 \times 10^{-17} \\ & \mathrm{v}^{2}=1.76 \times 10^{+14} \\ & \mathrm{v}=1.3(2) \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \\ & \lambda=\mathrm{h} / \mathrm{mv} \\ & \begin{array}{l} \lambda \end{array}=6.63 \times 10^{-34} /\left(9.11 \times 10^{-31} \times 1.3 \times 10^{7}\right) \\ & \quad=5.5 \times 10^{-11}=55(\mathrm{pm}) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$ | accept $\mathrm{eV}=\mathrm{p}^{2} / 2 \mathrm{~m} ; \lambda=\mathrm{h} / \mathrm{p}=\mathrm{h} / \sqrt{ }(2 \mathrm{meV})$ <br> ecf with incorrect (sensible) energy; e.g. not values giving $\mathrm{v}>\mathrm{c}$ or very small v <br> last mark for answer in pm, accept 56 |
|  |  |  | - Total question 5 | 17 |  |


| Question |  |  | Answer | M | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 |  |  |  |  |  |
|  | a |  | A spectrum containing only a (few) discrete wavelengths or colours | B1 | accept some idea of discreteness, e.g. mechanism: atomic state changes, energy level changes, fingerprint of element idea |
|  | b |  | Relative Intensity <br> Sketch with correct positions; and relative intensities | B2 | allow only a few nm for width of lines if not drawn as sharp vertical lines; otherwise max 1 mark. ignore requirement for labels |
|  | C |  | $\begin{aligned} & \mathrm{E}=\mathrm{hc} / \lambda+\text { attempt to use; or } \mathrm{E}_{g} / \mathrm{E}_{\mathrm{y}}=\lambda_{y} / \lambda_{\mathrm{g}} \\ & \text { Ratio }=589 / 570=1.03 \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | require at least 3 SF |
|  | d |  | from left to right on diagram G, R and Y | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | allow 1 mark for only 1 correct |
|  | e | i | $\begin{aligned} & \lambda=d \sin \theta \\ & 615 \times 10^{-9}=1.67 \times 10^{-6} \sin \theta \text { gives } \theta=21.61^{\circ} \\ & 570 \times 10^{-9}=1.67 \times 10^{-6} \sin \theta \text { gives } \theta=19.96^{\circ} \\ & \Delta \theta=1.65^{\circ} . \end{aligned}$ | $\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$ | for $\theta$ rounded to $20.0^{\circ}$ allow $\Delta \theta=1.6^{\circ}$; allow answer to 2 SF |
|  |  | ii | $\mathrm{n} \lambda=\mathrm{d} \sin \theta$ with $\theta=90^{\circ}$ or $\sin \theta=1$ $\mathrm{n}=1.67 \times 10^{-6} / 615 \times 10^{-9}=2.7$ so answer is 4 | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | no marks if no working shown |
|  | f | i | the energy of some of the photons of the sodium light are greater than the work function of the cathode (surface) <br> any of these photons absorbed by a (surface) electron can release it from the metal (surface) photoelectrons are attracted to the positive (collector) electrode, completing the circuit /causing a current | B1 B1 B1 | alt photon(s) absorbed by (surface) electron(s) (in metal surface); <br> electron (can be) emitted when (photon) energy is greater than work function (allow symbol for w.f.); released electron(s) complete(s) circuit/AW |
|  |  | ii | red light has the least energy as it has the longest wavelength/lowest frequency (and hence the least probability of releasing electrons) | B1 | allow R or 615 nm |
|  |  |  | Total question 6 | 18 |  |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

