Oxford Cambridge and RSA

GCE

Physics A

Unit H556/02: Exploring physics
Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
$*$	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
\bigcirc	Omission mark
SF	Error in number of significant figures
\checkmark	Correct response
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
reject	alternative and acceptable answers for the same marking point
not	Answers which are not worthy of credit
ignore	Statements which are irrelevant
allow	Wnswers that can be accepted
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument forward
ORA	

MARKING INSTRUCTIONS

Generic version as supplied by OCR Sciences

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or more significant figures.
If an answer is given to fewer than 2 sf , then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Additional Guidance.

SECTION A

Question	Answer	Marks	
1	B	1	
2	C	1	
3	D	1	
4	B	1	
5	A	1	
6	C	1	
7	A	1	
8	D	1	
9	D	1	
10	C	1	
11	D	1	
12	A	1	
13	D	1	
14	B		1
15	B	1	
		15	

SECTION B

Question			Answer	Marks	Guidance
16	(a)		(When two or more waves meet at a point in space) the resultant (displacement) is equal to the (vector) sum of the individual displacements of waves (meeting at a point)	B1	Allow total / $\Sigma /$ net for resultant Not amplitude for displacement
	(b)	(i)	Clear evidence of at least two fringe separations used to determine x and x in the range 7.0 to 9.0 mm $\begin{aligned} & \lambda=\frac{0.25 \times 10^{-3} \times 8 \times 10^{-3}}{4.25} \quad \text { (Allow any subject) } \\ & \lambda=4.7 \times 10^{-7}(\mathrm{~m}) \end{aligned}$	B1 C1 A1	Expect 8 (mm) Allow ecf for incorrect value of x
		(ii)	Red light has longer wavelength / λ and separation between fringes increases (AW) Separation between fringes justified in terms of $x \propto \lambda$ or $x=\lambda D / a, D$ and a are constants	M1 A1	Allow other acceptable labels for D and a
			Total	6	

Question			Answer	Marks	Guidance
17	(a)		Any one from: current, temperature, light intensity and amount of substance / matter	B1	Not: ampere, kelvin, candela and mole Not correct quantity with its unit, e.g. current in \underline{A} or current (A)
	(b)	(i)	$\begin{aligned} & R=\frac{\rho L}{A} \quad \text { and } \quad A=\pi\left(\frac{d}{2}\right)^{2} \\ & R_{X}=\frac{4 \rho L}{\pi d^{2}} \quad \text { and } \quad R_{Y}=\frac{8 \rho L}{\pi d^{2}} \\ & \text { Clear steps leading to } R=\frac{12 \rho L}{\pi d^{2}} \end{aligned}$	M1 A1	
		(ii)1	Ruler / tape measure (for L) and micrometer (for d)	B1	Allow (vernier / digital) calipers or travelling microscope for micrometer
		(ii)2	$R=2.3(4)(\Omega)$ $\frac{0.1}{9.5}$ or $2 \times \frac{0.003}{0.270}$ $\frac{0.1}{9.5}+2 \times \frac{0.003}{0.270}$ or 0.0327 or 3.27% absolute uncertainty in $R=0.0327 \times 2.34=0.077$ $R=2.3 \pm 0.1(\Omega)$	C1 C1 C1 A1	Allow other correct methods for getting $2.3 \pm 0.1(\Omega)$ Allow 2 or more sf for this C1 mark Note 0.0105 or 1.05% or 0.0222 or 2.22% scores this mark, allow 2sf or more Allow: $2.34 \pm 0.08(\Omega)$ Note use of R_{X} or R_{Y} instead of R can score the second and third C1 marks only
		(ii)3	(The actual) R is large(r) because (the actual) d is small(er) or (the actual) A is small(er) or $R \propto 1 / d^{2}$	B1	Allow: The calculated R is small(er) because (the measured) A is large (r) or $R \propto 1 / d^{2}$
			Total	9	

Question		Answer	Marks	Guidance
$\mathbf{1 8}$	(a)	(i)	Resistance of parallel combination $=40(\Omega)$ $I=\frac{4.2-1.5}{40+33}$ $I=0.037(\mathrm{~A})$	$\mathbf{C 1}$
	A1	Allow $(1 / 60+1 / 120)^{-1}$		
(ii)	Any two from: The current decreases up to 1.5 V The current is zero at 1.5 V The current changes direction $/$ is negative when $<1.5 \mathrm{~V}$ The current increases below 1.5 V	B1×2 $I=\frac{4.2+1.5}{40+33}=0.078(\mathrm{~A})$		

Quest	Answer	Marks	Guidance
(b)*	Level 3 (5-6 marks) Clear description including a reasonable estimate of r and clear limitations There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description with an attempt to estimate r and some limitations There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1×6	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Indicative scientific points may include: Description and estimation - Correct circuit with (variable) resistor, ammeter and voltmeter - Correct symbols used for all the components - $\quad R$ changed to get different values for P - $R=V / I$ (using ammeter and voltmeter readings) or R measured directly using an ohmmeter with the variable resistor isolated from the circuit or R read directly from a resistance box - Power calculated using $P=V^{2} / R$ or $P=V I$ or $P=I^{2} R$ - The value of r is between 1.0 to 3.0Ω - A smooth curve drawn on Fig. 18.2 (to determine r) - A better approximation from sketched graph or r is between 1.5 and 2.7Ω - Any attempt at using $E=V+I r$, with or without the power equation(s) to determine r-even if the value is incorrect Limitations - 'More data' required - Data point necessary at $R=2.0 \Omega$ / More data (points) needed between 1 to 3Ω - No evidence of averaging / Error bars necessary (for both P and R values)
	Total	11	

Question			Answer	Marks	Guidance
20	(a)		Correct pattern Correct direction of the field	B1 B1	Note: At least five field lines must be drawn and of these, two must be perpendicular (by eye) to the surface of the sphere and plate Note: This may be shown on just one line
	(b)		(Electric potential) is the work done per (unit) charge in bringing a positive charge from infinity (to the point).	B1	Allow: work done / energy required to bring a unit positive charge from infinity (to the point)
	(c)	(i)	$V=Q / 4 \pi \varepsilon_{0} r \quad \text { (Allow any subject) }$ $Q=4 \pi \times 8.85 \times 10^{-12} \times 0.015 \times 5000$ $Q=8.3(4) \times 10^{-9}(\mathrm{C})$	C1 C1 AO	Note using $\boldsymbol{E}=\boldsymbol{V} / \boldsymbol{d}$ with $E=\mathrm{Q} / 4 \pi \varepsilon_{0} r^{2}$ is wrong physics and hence scores zero Note if the value of ε_{0} is not given here, it could be implied in the correct 3sf answer Allow any subject here if the answer is given to more than 2sf Allow the use of $1 / 4 \pi \varepsilon_{0}=9 \times 10^{9}$
		(ii)1	```(electric force =) 1.7 < 10-2 }\times\mathrm{ tan4.0 (Allow any subject) (electric force = 1.19 * 10-3 N}```	$\begin{aligned} & \text { M1 } \\ & (\mathrm{A} 0) \end{aligned}$	Not $1.7 \times 10^{-2} \sin 4$ or $1.7 \times 10^{-2} \cos 86$ Allow $1.7 \times 10^{-2} \times \sin 4 / \cos 4$
		(ii)2	$E=1.2 \times 10^{-3} / 8.3(4) \times 10^{-9}$ $E=1.4 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$	C1 A1	Allow 2 marks for $1.45 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right), 8.3 \times 10^{-9}$ used Allow 2 marks for $1.43 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right), 1.19 \times 10^{-3}(\mathrm{~N})$ used
			Total	8	

Question		Answer	Marks	Guidance
(b)	(i)	There is a changing / fluctuating (magnetic) field / flux (linkage) (magnetic) field / flux (linkage) in core and secondary (coil) Statement of Faraday's law: e.m.f. (induced) \propto rate of change of (magnetic) flux linkage	M1 A1 B1	Note: This changing flux can be anywhere Allow 'the direction of the field oscillates' Allow 'the core helps to link the flux to the secondary coil' Allow 'equal to / =' Ignore 'cutting of flux' Not just $E=(-) \Delta(N \phi) / \Delta t$
	(ii)1	$\begin{aligned} & \left(I_{S}=\right) 24 / 12 \text { or } 2.0(\mathrm{~A}) \\ & \left(I_{P}=\right) \frac{20}{400} \times 2.0 \\ & \text { (current in primary }=) 0.10(\mathrm{~A}) \\ & \text { or } \\ & \left(V_{P}=\right) 12 \times 20 \text { or } 240(\mathrm{~V}) \\ & \left(I_{P}=\right) \frac{24}{240} \\ & \text { (current in primary }=) 0.10(\mathrm{~A}) \end{aligned}$	C1 A1 C1 A1	Allow 1 sf answer Allow 1 sf answer
	(ii)2	Idea of changing / increasing (magnetic) field / flux / current (in primary) at the start Eventually current and flux (linkage) are constant, therefore no e.m.f.	B1 B1	Note: Any labels used must be clearly defined
		Total	13	

Question			Answer	Marks	Guidance
23	(a)		Any two from: It acts between quarks / nucleons / hadrons 'Short-range' force Repulsive below (about) 0.5 fm Attractive up to (about) 3 fm	B1×2	Allow any correctly named particle Allow any value between 0.5 fm and 5 fm
	(b)	(i)	proton $=\mathrm{uud}$ or neutron $=\mathrm{udd}$	B1	
		(ii)	$\mathrm{d} \rightarrow \mathrm{u}+{ }_{-1}^{0} \mathrm{e}$ $+\bar{v}_{(e)}$	M1 A1	Allow the equation expressed in words Allow udd \rightarrow uud $+{ }_{-1}^{0} \mathrm{e}$ Allow ${ }_{-1}^{0} \beta$ Not e for electron Allow this mark if electron written as e or β^{-}
	(c)		```mass (of nucleus) \(\propto A\) volume (of nucleus) \(\propto\) radius \(^{3} \propto A\) and clears steps using \(\rho=m / V\) to show density is (about) the same```	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow mass $=A m$, mass $=A u$, etc. Allow r or R for radius Allow any sensible constant in front of the r^{3}
			Total	7	

Question		Answer	Marks	Guidance
24	(a)	${ }_{1}^{2} \mathrm{H}$ has two nucleons binding energy per nucleon $=1.1 \underline{\mathrm{MeV}}$ (per nucleon)	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow $1.76 \times 10^{-13} \mathrm{~J}$ (per nucleon)
	(b)	The protons / nuclei repel each other (At high temperature) particles have more KE and hence can get close (enough to fuse)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Not atoms / particles Allow 'enough KE to get close' Not atoms or ions
	(c)	$\begin{aligned} & E=h c / \lambda \quad \text { and } \quad E=m c^{2} \text { or } E=2 \times m c^{2} \\ & \lambda=\frac{6.63 \times 10^{-34}}{2 \times 9.11 \times 10^{-31} \times 3.0 \times 10^{8}} \\ & \text { maximum wavelength }=1.2 \times 10^{-12}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow $h c / \lambda=2 m c^{2}$ with or without the factor of 2 Note: The mass must be $2 m_{\mathrm{e}}$ to score this and the next mark Not de Broglie equation $\lambda=h / m v$ with speed of c; which gives $2.4 \times 10^{-12}(\mathrm{~m})$ Allow 2 marks for $6.6 \times 10^{-16}(\mathrm{~m})$; mass of neutron or proton used instead Allow the following marks for 1.02 MeV recalled: $\begin{align*} & E=1.63 \times 10^{-13}(\mathrm{~J}) \tag{C1}\\ & \lambda=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{1.63 \times 10^{-13}} \tag{C1} \end{align*}$ maximum wavelength $=1.2 \times 10^{-12}(\mathrm{~m})$ A1
		Total	7	

Question		Answer	Marks	Guidance
25	(a)	The patient is surrounded by (gamma) detectors or Increased activity is where F-18 accumulates (AW) The positrons (from the F-18) annihilate electrons (inside the patient) Each annihilation produces two gamma photons travelling in opposite directions The arrival times are used to locate position (of increased activity)	B1 B1 B1 B1	Allow 'diametrically opposite detectors' Not gamma rays / radiation Allow 'delay time'
	(b)	$\begin{aligned} & \lambda=\ln 2 / 110 \text { or } 6.3 \times 10^{-3}\left(\mathrm{~min}^{-1}\right) \\ & 0.30=\mathrm{e}^{-6.3 \times 10^{-3} t} \\ & t=\frac{\ln (0.30)}{-6.3 \times 10^{-3}} \\ & t=190 \text { (minutes) } \end{aligned}$	C1 C1 A1	Allow $1.05 \times 10^{-4}\left(\mathrm{~s}^{-1}\right)$ This is the same as $0.30=e^{-1.05 \times 10^{-4} t}$ Note: This mark is for a In expression (any subject) Allow 2 marks for $1.15 \times 10^{4}(\mathrm{~s})$ as the final answer
	(c)	Any sensible suggestion, e.g. 'post-code' lottery, some patients may not get the treatment because of where they live, longer waiting lists, etc.	B1	
		Total	8	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

