Oxford Cambridge and RSA

GCE

Physics A

Unit H556/02: Exploring physics
Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations available in RM Assessor

Annotation		Meaning
\checkmark	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
\geqslant	Incorrect response	Used to indicate an incorrect answer or a point where a mark is lost.
AE	Arithmetic error	Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.
ECF	Error carried forward	Used in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.
L1	Level 1	L 1 is used to show 2 marks awarded and $\mathrm{L} 1^{\wedge}$ is used to show 1 mark awarded.
L2	Level 2	L2 is used to show 4 marks awarded and L2^ is used to show 3 marks awarded.
L3	Level 3	L3 is used to show 6 marks awarded and L3^ is used to show 5 marks awarded.
POT	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEEN	Seen	To indicate working/text has been seen by the examiner.
SF	Error in number of significant figures	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. Penalised only once in the paper.
TE	Transcription error	This error is when there is incorrect transcription of the correct data from the question, graphical read-off, formulae booklet or a previous answer. Do not allow the relevant mark and then follow through the working giving ECF for subsequent marks.
XP	Wrong physics or equation	Used in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
\wedge	Omission	Used to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
$/$	alternative and acceptable answers for the same marking point
Reject	Answers which are not worthy of credit
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question Answer	Marks		
1	A	1	
2	C	1	
3	C	1	
4	B	1	
5	A	1	
6	C	1	
7	B	1	
8	A	1	
9	D	1	
10	C	1	
11	D	1	
12	B	1	
13	B	1	
14	C	1	
15	A	1	
		15	

SECTION B

Question			Answer	Marks	Guidance
16	(a)		$\left(R=\frac{V}{I}=\frac{W}{Q I} ; Q=I t\right)$ charge $\rightarrow \mathrm{As}$ or energy $\rightarrow \mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \times \mathrm{m}$ or $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ (base units) $\mathrm{kg} \mathrm{m}^{2} \mathrm{~A}^{-2} \mathrm{~s}^{-3}$	C1 A1	Allow other correct methods Allow Q or C or coulomb for 'charge'; E or W or joule or J or work done for 'energy' Allow 1 mark for $\mathrm{J} \mathrm{s}^{-1} \mathrm{~A}^{-2}$ Allow $\frac{\mathrm{kg} \mathrm{m}^{2}}{\mathrm{~A}^{2} \mathrm{~s}^{3}}$ or $\mathrm{kg} \mathrm{m}^{2} /\left(\mathrm{A}^{2} \mathrm{~s}^{3}\right)$ Not $\mathrm{kg} \mathrm{m}^{\mathrm{A}^{2}} / \mathrm{A}^{2} / \mathrm{s}^{3}$ or $\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{3} / \mathrm{A}^{2}$
	(b)	(i)	$\begin{aligned} & (R=) \frac{6.0}{0.150} \\ & R=40 \Omega \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A0 } \end{aligned}$	Allow any correct value of $V(\pm 0.1 \mathrm{~V})$ divided by the correct value of $I(\pm 10 \mathrm{~mA})$ from the straight line for \mathbf{R}
		(ii)1	$\begin{aligned} & \left(V_{\mathrm{L}}=\right) 1.4(\mathrm{~V}) \text { or } \quad\left(V_{\mathrm{R}}=\right) 4.0(\mathrm{~V}) \text { or } \quad\left(R_{\mathrm{T}}=\right) 6.0 / 0.1(\Omega) \\ & \left(V_{\text {terminal }}=\right) 5.4(\mathrm{~V}) \text { or }\left(V_{\mathrm{r}}=\right) 0.6(\mathrm{~V}) \text { or } \quad(r=) 60-54(\Omega) \\ & r=6.0(\Omega) \end{aligned}$	C1 C1 A1	Allow full credit for other correct methods Possible ECF from (i) Allow $\pm 0.1 \mathrm{~V}$ for the value of p.d. from the graph Note getting to this stage will also secure the first C1 mark Allow 1 SF answer here without any SF penalty
		(ii)2	$\begin{aligned} & \rho=\frac{40 \times 2.4 \times 10^{-6}}{8.0 \times 10^{-3}} \quad \text { (Any subject) } \\ & \rho=0.012(\Omega \mathrm{~m}) \end{aligned}$	C1 A1	Allow ECF Allow 1 mark for either 0.018 for using $60 \Omega, 0.016(2)$ for using 54Ω or for 0.0018 for 6.0Ω
		(ii)3	$\begin{aligned} & n=\frac{6.5 \times 10^{17}}{2.4 \times 10^{-6} \times 0.000} \quad \text { or } \quad n=3.385 \times 10^{25}\left(\mathrm{~m}^{-3}\right) \\ & v=\frac{2.4 \times 10^{-6} \times 3.385 \times 10^{25} \times 1.60 \times 10^{-19}}{2 .} \quad \text { (Any subject) } \\ & v=7.7 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	Note do not penalise again for the same POT error Allow 1 mark for $4(.0) \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) ; n=6.5 \times 10^{17}$ used
			Total	11	

Question		Answer	Marks	Guidance
18	(a)	$\begin{aligned} & 1.00 \times \sin 56.3=1.50 \times \sin r \quad \text { (Any subject) } \\ & r=33.7^{\circ} \end{aligned}$ Correct working / reasoning leading to 90.0° (e.g. $\theta=180-(56.3+33.7)$, therefore $\theta=90.0^{\circ}$)	M1 A1 A1	Allow with or without the 1.00 Allow 34 ${ }^{\circ}$
	(b)	Use a polaroid / polarising filter Rotation will change intensity	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow brightness / light
	(c)	$\begin{aligned} & \hline \text { distance }=6.0 / \cos 33.7 \text { or } 7.2(\mathrm{~cm}) \\ & \text { OR } \\ & v=3.00 \times 10^{8} / 1.50 \text { or } 2.00 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & t=7.2 \times 10^{-2} / 2.00 \times 10^{8} \\ & t=3.6 \times 10^{-10}(\mathrm{~s}) \end{aligned}$	C1 A1	Allow 34° Allow 2×10^{8}
		Total	7	

Question		Answer	Marks	Guidance
19	(a)	Any two from: - Reflection - Diffraction - Interference / superposition	B1 $\times 2$	Allow correct annotation of Fig. 19.1 for each effect
	(b)	Interference / superposition (of microwaves along PQ) Maximum (signal) / constructive (interference) when waves are in phase Minimum (signal) / destructive (interference) when waves are in anti-phase	B1 B1 B1	Allow constructive when phase difference is $n \times 360^{\circ}(n$ is an integer) $/ 0^{\circ} / 360^{\circ}$ Allow destructive phase difference is $[2 n+1] \times 180^{\circ}(n$ is an integer) / 180° Not 'out of phase' Special case - allow 1 mark from the last two B1 marks, for signal linked to path difference and wavelength
		Total	5	

Question			Answer	Marks	Guidance
20	(a)	(i)	A straight line with non-zero V_{0} intercept $\text { gradient }=1.3 \times 10^{-6}$	B1 B1	Ignore spread of data points on either side of the line Allow Intercept > 0 and $<1.0 \mathrm{~V}$ Allow (1.10 to 1.60) $\times 10^{-6}$; no need to check calculation
		(ii)	$\begin{aligned} & \text { gradient }=\frac{h c}{e} \\ & h=\frac{1.3 \times 10^{-6} \times 1.60 \times 10^{-19}}{3.00 \times 10^{2}} \quad \text { (Any subject) } \\ & h=6.9 \times 10^{-34}(\mathrm{~J} \mathrm{~s}) \end{aligned}$	C1 C1 A1	Possible ECF from (i) Note the answer must be given 2 SF only
		(iii)	$\begin{aligned} & \text { difference }=\frac{6.9 \times 10^{-34}-6.6(3) \times 10^{-34}}{6.6(3) \times 10^{-34}} \times 100 \% \\ & \text { difference }=4.1 \% \end{aligned}$	B1	Possible ECF from (ii) Ignore sign Not division by value from (ii) Allow 1 SF answer
		(iv)	Random (error) / data points are spread about line Systematic (error) / line does not pass through origin Take (many) repeat readings (of V_{0}) and average Conduct the experiment in a darkroom / use (black) tube over the LED to view when it is lit / use a (digital) voltmeter with no zero error	B1 B1 B1 B1	Allow other sensible suggestion Not faulty voltmeter

Quest	Answer	Marks	Guidance
(b)	Any one from: Energy of visible light photon < work function (of zinc) (frequency of) visible (light/photon) < threshold frequency Any one from: Energy of UV photon > work function (of zinc) (frequency of) UV (radiation/photon) > threshold frequency Any two from: - Collapse of leaf linked to removal of electrons - One-to-one interaction of photon and (surface) electron - Photon energy is independent of intensity / Intensity linked to rate of photons (incident on the zinc plate)	B1 B1 $B 1 \times 2$	Allow f for frequency, λ for wavelength and ϕ for work function throughout Allow 'overcome' / 'met' / 'reached' when describing > or < Allow photons Not t_{0} for threshold frequency Allow equivalent statement with wavelength Allow = instead of > or < throughout for UV Allow equivalent statement with wavelength Ignore stem / plate / leaf / electroscope becoming positive
	Total	14	

Question			Answer	Marks	Guidance
21	(a)	(i)	The gradient is maximum / maximum rate of change of B / maximum rate of change of flux (linkage)	B1	Allow slope instead of gradient
		(ii)	$\begin{aligned} & \text { Tangent drawn to curve at } B=0 \\ & \text { gradient }=12.5 \\ & \text { (maximum e.m.f. }=12.5 \times 14 \times 10^{-4} \times 85 \text {) } \\ & \text { maximum e.m.f. }=1.5(\mathrm{~V}) \end{aligned}$	C1 C1 A1	Allow 11.70 to 13.30 ; no need to check calculation Allow fraction if calculated value is within the range Allow ECF from the gradient value if value is outside the range Alternative: $\begin{array}{ll} E=B A N \omega & \text { C1 } \\ E=40 \times 10^{-3} \times 14 \times 10^{-4} \times 85 \times 2 \pi \times 50 & \text { C1 } \\ \text { maximum e.m.f. }=1.5(\mathrm{~V}) & \text { A1 } \end{array}$
	(b)		Sinusoidal curve with the same peak e.m.f. Sinusoidal curve with half period	B1 B1	Note curve must show at least half a period Allow ± 1 small square for e.m.f. Ignore phase Note graph must show at least half a period Allow ± 1 small square for t
			Total	6	

Question		Answer	Marks	Guidance
22	(a)	$\begin{aligned} & \left(V=V_{0} e^{-t C R}\right) \quad \ln \left(V / V_{0}\right)=-t / C R \quad \text { or } \quad \ln V=\ln V_{0}-t / C R \\ & \ln V=\ln V_{0}-t / C R \quad \text { and } \quad y=m x+c / \text { gradient }=-1 / C R \end{aligned}$	B1 B1	Note the minus sign is necessary
	(b)*	Level 3 (5-6 marks) Clear description and correct value of C There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description and some correct working OR Some description and correct value for C There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Some description OR Some working There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit	$\mathrm{B} 1 \times 6$	Indicative scientific points may include: Description - $C=\varepsilon A / d$ - $A=$ area (of overlap) and $d=$ separation. - Use ruler to measure the side / radius / diameter (and hence the area A) - Ensure total overlap of plates. - Measure the thickness / d of paper using micrometer / (vernier) caliper. - Take several readings of thickness and determine an average value for d Calculation of capacitance - gradient ≈ 85 - $C \approx 1.2 \times 10^{-8}(\mathrm{~F})$
		Total	8	

Question			Answer	Marks	Guidance
23	(a)	(i)	$\left(N\right.$ at $15^{\circ} / N$ at $\left.150^{\circ}=\right) 10^{5.1} \div 10^{1.5}$ or $10^{3.6}(\approx 4000)$	B1	
		(ii)	Most of the (alpha) particles went through without (much) deflection, hence the atom is mostly empty / space / vacuum Some of the (alpha) particles were scattered (through large angles / greater than 90°), hence there must be a nucleus (at the centre of the atom). Any one from: - The nucleus is very small compared with the atom - Positive charge at the centre / nucleus is positive - Most of the mass (of the atom) is at centre / dense nucleus	B1 B1 B1	Allow Many / Majority / Lots of the alpha particles Allow Few(er) / Small(er) number of the alpha particles ...
	(b)	(i)	Kinetic energy (of proton) changes to potential (energy) or Potential energy increases as the kinetic energy (of the proton) decreases or Potential energy increases as work is done against the field / against repulsion / positive charge	B1	Allow 'it' / PE for (electric) potential energy Allow KE / E_{k}
		(ii)	$\begin{aligned} & \text { energy }=0.52 \times 10^{6} \times 1.60 \times 10^{-19} \text { or } 8.3(2) \times 10^{-14}(\mathrm{~J}) \\ & \frac{1.60 \times 10^{-19} \times 27 \times 1.60 \times 10^{-19}}{4 \pi \varepsilon_{0} R}=8.32 \times 10^{-14} \\ & R=7.5 \times 10^{-14}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow 2 mark for $1.6 \times 10^{-13}(\mathrm{~m}) ; Z=59$ used Allow 2 mark for $8.9 \times 10^{-14}(\mathrm{~m}) ; Z=32$ used Allow 1 mark for $2.8 \times 10^{-15}(\mathrm{~m}) ; Z=1$ used Allow 1 mark for $1.2 \times 10^{-32}(\mathrm{~m})$; energy $=5.2 \times 10^{5}$ used
			Total	8	

Question			Answer	Marks	Guidance
24	(a)	(i)	alpha-particle / ${ }_{2}^{4} \mathrm{He} /{ }_{2}^{4} \alpha$	B1	
		(ii)	nucleon number for $\mathrm{Bi}=209$ antineutrino $/{ }^{(0)}{ }_{(0)} \bar{u}_{(\mathrm{e})}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Note: Do not allow incorrect subscript and superscript
	(b)	(i)	Aluminium (sheet placed between source and detector) The count (rate) reduces or Magnetic / electric field used Electrons identified from correct deflection / motion in field		Allow count (rate) drop to background / zero Allow 2 marks for 'the range in air is a few m'
		(ii)	$\begin{aligned} & (\lambda=) \ln 2 / 3.3\left(\mathrm{~h}^{-1}\right) \text { or }(\lambda=) 0.21\left(\mathrm{~h}^{-1}\right) \\ & \left(A_{0}=\right) 12 \times 10^{3} / \mathrm{e}^{-(0.21 \times 7.0)} \text { or }\left(A_{0}=\right) 5.219 \times 10^{4}(\mathrm{~Bq}) \\ & \left(N_{0}=\right) 5.219 \times 10^{4} / 5.835 \times 10^{-5} \\ & \text { number of nuclei }=8.9 \times 10^{8} \\ & \text { Or } \\ & (\lambda=) \ln 2 /[3.3 \times 3600]\left(\mathrm{s}^{-1}\right) \text { or }(\lambda=) 5.835 \times 10^{-5}\left(\mathrm{~s}^{-1}\right) \\ & (N=) 1.2 \times 10^{4} / 5.835 \times 10^{-5} \text { or } 2.057 \times 10^{8} \\ & \left(N_{0}=\right) 2.057 \times 10^{8} / \mathrm{e}^{-(0.21 \times 7.0)} \\ & \text { number of nuclei }=8.9 \times 10^{8} \end{aligned}$	C1 C1 C1 A1 C1 C1 C1 A1	Allow credit for alternative methods Note this is the same as $12 \times 10^{3} \div(0.5)^{7.0 / 3.3}$ Note 9.0×10^{8} can score full marks if numbers are rounded Possible ECF for incorrect conversion of time Note this is the same as $2.057 \times 10^{8} \div(0.5)^{7.0 / 3.3}$
			Total	9	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

