A Level Physics A H556/01 Modelling physics # Monday 4 June 2018 – Afternoon Time allowed: 2 hours 15 minutes #### You must have: the Data, Formula and Relationship Booklet (sent with general stationery) #### You may use: - · a scientific or graphical calculator - a ruler (cm/mm) | First name | | |---------------|------------------| | Last name | | | Centre number | Candidate number | #### **INSTRUCTIONS** - Use black ink. You may use an HB pencil for graphs and diagrams. - Complete the boxes above with your name, centre number and candidate number. - · Answer all the questions. - Write your answer to each question in the space provided. If additional space is required, use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown. - Do **not** write in the barcodes. ### **INFORMATION** - The total mark for this paper is 100. - The marks for each question are shown in brackets []. - Quality of extended responses will be assessed in questions marked with an asterisk (*). - · This document consists of 32 pages. ### **SECTION A** ## You should spend a maximum of 30 minutes on this section. Write your answer to each question in the box provided. Answer **all** the questions. | 1 | Wh | ich of the following units is not an S.I. base unit? | | |---|-----|---|-----| | | Α | ampere | | | | В | mole | | | | С | volt | | | | D | kilogram | | | | Υοι | ır answer | [1] | | 2 | Wh | ich set of quantities are all scalar? | | | | Α | acceleration, displacement, velocity | | | | В | energy, mass, power | | | | С | extension, force, gravitational potential energy | | | | D | weight, kinetic energy, work done | | | | Υοι | ır answer | [1] | | 3 | tem | netal block of mass $0.28\mathrm{kg}$ has an initial temperature of $82^\circ\mathrm{C}$. It is dropped into cold water. apperature of the block after 1.2 minutes is $20^\circ\mathrm{C}$. The specific heat capacity of the metal is $130\mathrm{Jkg^{-1}K^{-1}}$. | The | | | Wh | at is the average thermal power transferred away from the metal block? | | | | Α | 31 W | | | | В | 41 W | | | | С | 1900 W | | | | D | 2700 W | | | | Υοι | ır answer | [1] | **4** The acceleration *a* of a simple harmonic oscillator is related to its displacement *x* by the equation $$a = -25 x$$. What is the frequency of the oscillator? - **A** 0.80 Hz - **B** 1.3 Hz - **C** 4.0 Hz - **D** 5.0 Hz Your answer [1] **5** A rod is fixed to a pulley. Two 50 N forces are applied to the ends of the rod as shown. The tension in the rope attached to the pulley is *T*. The system is in equilibrium. Not to scale What is the moment of the tension *T* about the centre of the pulley? - **A** 10 N m - **B** 20 N m - C 30 N m - **D** 40 N m Your answer [1] 6 The latent heat of vaporisation of a liquid is 2300 kJ kg⁻¹ and it has a molar mass of 0.018 kg mol⁻¹. What is the energy required to change 30 moles of the liquid to gas? - **A** $4.1 \times 10^4 \text{ J}$ - **B** $1.2 \times 10^6 \text{ J}$ - **C** $6.9 \times 10^7 \text{ J}$ - **D** $3.8 \times 10^9 \text{ J}$ | Your answer | | | [1] | |-------------|--|--|-----| |-------------|--|--|-----| 7 One end of a spring is fixed and a force *F* is applied to its other end. The elastic potential energy in the extended spring is *E*. The spring obeys Hooke's law. What is the extension *x* of the spring? - $A \qquad x = \frac{E}{F}$ - $\mathbf{B} \qquad x = \frac{F}{E}$ - $\mathbf{C} \qquad x = \frac{2E}{F}$ - $D \qquad x = \frac{F}{2E}$ Your answer [1] 8 An electron makes a transition between the two energy levels shown below. This transition produces a photon of frequency $4.10 \times 10^{14} \, \text{Hz}$. What is the value of the energy level X? **A** $$-2.68 \times 10^{-19} \text{J}$$ **B** $$-2.72 \times 10^{-19}$$ J $$C -5.40 \times 10^{-19} J$$ **D** $$-8.12 \times 10^{-19} \text{J}$$ Your answer [1] **9** A pendulum is oscillating in air and experiences damping. Which of the following statements is/are correct for the damping force acting on the pendulum? - 1 It is always opposite in direction to acceleration. - 2 It is always opposite in direction to velocity. - 3 It is maximum when the displacement is zero. - A Only 1 and 2 - B Only 2 and 3 - C Only 3 - **D** 1, 2 and 3 Your answer [1] **10** A trolley of mass *M* is pulled along a horizontal table by a force *W* provided by a mass hanging from the end of a string as shown. Frictional forces are negligible. The acceleration of free fall is g. What is the correct equation for the acceleration a of the trolley? $$\mathbf{A} \qquad a = \frac{W}{M}$$ $$\mathbf{B} \quad a = g$$ $$\mathbf{C} \qquad a = \frac{W}{2M}$$ $$\mathbf{D} \qquad a = \frac{W}{M + \frac{W}{q}}$$ | Your answer | | |-------------|--| |-------------|--| [1] 11 The table below shows some data on two wires **X** and **Y**. | Wire | Young modulus of material/GPa | Cross-sectional area of wire/mm ² | |------|-------------------------------|--| | X | 120 | 1.0 | | Υ | 200 | 2.0 | The wires **X** and **Y** have the same original length. The tension in each wire is the same. Both wires obey Hooke's law. What is the value of the ratio $\frac{\text{extension of } \mathbf{X}}{\text{extension of } \mathbf{Y}}$? - **A** 0.30 - **B** 1.7 - **C** 2.0 - **D** 3.3 Your answer [1] **12** An object is dropped from rest at time t = 0. It falls vertically through the air. The variation of the velocity v with time t is shown below. Which statement is correct about this object? - A It has constant acceleration. - **B** It experiences zero drag at $t = 30 \, \text{s}$. - **C** It has an acceleration of $9.81 \,\mathrm{m\,s^{-2}}$ at $t = 0 \,\mathrm{s}$. - **D** It travels the same distance in every successive 10 s. Your answer [1] | 13 | Earth has a mass of 6.0 × 10 ²⁴ kg and a radius of 6400 km. | |----|--| | | A satellite of mass 320 kg is lifted from the Earth's surface to an orbit 1200 km above its surface. | What is the change in the gravitational potential energy of the satellite? - **A** $9.1 \times 10^2 \text{ J}$ - **B** $9.9 \times 10^6 \text{ J}$ - **C** $3.2 \times 10^9 \text{ J}$ - **D** $3.8 \times 10^9 \text{ J}$ | Your answer | | [1] | |-------------|--|-----| |-------------|--|-----| 14 The volume of one mole of an ideal gas is V. The gas exerts pressure p and has thermodynamic temperature T. Which of the following has the units J mol⁻¹ K⁻¹? - \mathbf{A} pV - $\mathbf{B} \quad \frac{p}{T}$ - $c \frac{V}{T}$ - $\mathbf{D} \quad \frac{\rho V}{T}$ | Your answer | | [1] | |-------------|--|-----| |-------------|--|-----| 15 An object oscillates with simple harmonic motion. Which graph **best** shows the variation of its potential energy *E* with distance *x* from the equilibrium position? В С D Your answer [1] ## 10 BLANK PAGE PLEASE DO NOT WRITE ON THIS PAGE ### **SECTION B** Answer all the questions. 16 (a) A tennis ball is struck with a racket. The initial velocity v of the ball leaving the racket is $30.0\,\mathrm{m\,s^{-1}}$ and it makes an angle of 70° to the horizontal as shown in Fig. 16. Air resistance is negligible Fig. 16 (i) Calculate the vertical component of the initial velocity of the ball. (ii) Use your answer in (i) to show that the ball reaches a maximum height h of about 40 m. | | (111) | Explain why the kinetic energy of the ball is not zero at maximum height. | |-------|-------|--| | | | [1] | | (| (iv) | The mass m of the ball is 57.0 g. Calculate the kinetic energy $E_{\rm k}$ of the ball when it is at its maximum height. | <i>E</i> _k = J [2] | | /L-* | Λ | " | | (D)^ | | etal ball is rolled off the edge of a horizontal laboratory bench. The initial horizontal city of the ball is v . The ball travels a horizontal distance x before it hits the level floor. | | | how | your knowledge of projectile motion to suggest the relationship between v and x . Describe an experiment can be safely conducted to test this relationship and how the data can be ysed. | ••••• | | | | | | | | | | | | | | | [6] | |-----| 17 (a) Phobos is one of the two moons orbiting Mars. Fig. 17.1 shows Phobos and Mars. Fig. 17.1 The orbit of Phobos may be assumed to be a circle. The centre of Phobos is at a distance 9380 km from the centre of Mars and it has an orbital speed $2.14 \times 10^3 \, \text{m s}^{-1}$. - (i) On Fig. 17.1, draw an arrow to show the direction of the force which keeps Phobos in its orbit. [1] - (ii) Calculate the orbital period T of Phobos. | <i>T</i> = | | s | [2 |] | |------------|--|---|----|---| |------------|--|---|----|---| (iii) Calculate the mass M of Mars. (b) The gravitational field strength at a distance r from the centre of Mars is g. The table below shows some data on Mars. | g/Nkg ^{−1} | <i>r</i> /km | lg (g/Nkg ⁻¹) | lg (<i>r</i> /km) | |---------------------|--------------|---------------------------|--------------------| | 1.19 | 6 000 | 0.076 | 3.78 | | 0.87 | 7000 | | | | 0.67 | 8 000 | -0.174 | 3.90 | | 0.53 | 9000 | -0.276 | 3.95 | | 0.43 | 10 000 | -0.367 | 4.00 | (i) Complete the table by calculating the missing values. [1] (ii) Fig. 17.2 shows the graph of $\lg (g/N kg^{-1})$ against $\lg (r/km)$. Fig. 17.2 1 Plot the missing data point on the graph and draw the straight line of best fit. [2] 2 Use Fig. 17.2 to show that the gradient of the straight line of best fit is −2. [1] 3 Explain why the gradient of the straight line of best fit is −2. [2] (c) In July 2018, the closest distance between the centre of Mars and the centre of Earth will be 5.8×10^{10} m. Fig. 17.3 shows the variation of the **resultant** gravitational field strength g between the two planets with distance r from the centre of the **Earth**. Fig. 17.3 | (i) | Explain briefly the overall shape of the graph in Fig. 17.3. | |------|---| | | | | | | | | | | | | | | [2] | | (ii) | Use the value of r when $g = 0$ from Fig. 17.3 to determine the ratio | | | mass of Earth mass of Mars | | | | | | | | | | | | | Wind turbines convert the kinetic energy of the wind into electrical energy. Fig. 18 shows a wind turbine. Fig. 18 (a) When the wind speed is 8.0 m s⁻¹, the kinetic energy of the air incident at the turbine per second is 1.2 MJ s⁻¹. Calculate the mass of the air incident at the turbine per second. mass per second = $kg s^{-1}$ [2] **(b)** A group of engineers are investigating the design of wind turbines. The maximum **input** power *P* from the wind is given by the equation $$P = \frac{1}{2}\rho A v^3$$ where A is the area swept out by the rotating blades, ρ is the density of air and v is the speed of the wind. | (i) | Show that the equation is homogeneous with both sides of the equation having the same base units. | |-------|--| | | | | | | | | | | | | | | ro. | | (ii) | The input power to the wind turbine is 1.2 MW when the wind speed is 8.0 m s^{-1} . The density of air is 1.3 kg m^{-3} . | | | Calculate the length <i>L</i> of the turbine blades. | | | | | | | | | | | | | | | | | | L = m [2] | | (iii) | A wind farm is required to produce an output power of $50\mathrm{MW}$ when the average wind speed is $8.0\mathrm{ms^{-1}}$. The efficiency of each wind turbine is 42%. | | | Calculate the minimum number N of wind turbines required to meet this demand. | | | | | | | | | | | | N =[2] | | 18 | Turn over | © OCR 2018 19 Fig. 19 is an incomplete Hertzsprung-Russell (HR) diagram of stars in our galaxy. Fig. 19 The position of the Sun on the HR diagram is shown in Fig. 19. | | | | | | _ | | |-----|-----------|--------|----------|----------|-----------|-------------------------| | (a) | State the | type o | of stars | found in | regions A | A and B . | **(b)** The Sun is a main sequence star. Its surface temperature is 5800 K. The wavelength of the emitted light at maximum intensity is 550 nm. Beta Pictoris is also a main sequence star. The wavelength of the emitted light at maximum intensity from this star is 370 nm. (i) Calculate the surface temperature of Beta Pictoris. temperature = K [2] (ii) On Fig. 19, mark the likely position of Beta Pictoris with a letter **P**. [1] 20 (a) Use the equations for momentum and kinetic energy to derive an expression for the kinetic energy $E_{\rm k}$ of a particle in terms of its momentum p and mass m. [2] (b) Fig. 20.1 shows an electric motor used to lift and lower a load. Fig. 20.1 At time t = 0 the load is on the ground with displacement s = 0. Fig. 20.2 shows the variation of the displacement s of the load with time t. Fig. 20.2 Fig. 20.3 (i) On Fig. 20.3, sketch a graph to show the variation of the velocity *v* of the load with time *t*. You do not need to insert a scale on the *v* axis. [3] | (ii) | Describe how the kinetic energy and the gravitational potential energy of the load varie from $t = 0$ to $t = 2.0$ s. | èS | |------|---|--------| | | | | | | | | | | |
21 | | | | 23 | | | |-------|--|--|--|--| | (iii) | (iii) During the downward journey of the load, the string breaks at $t = 4.0$ s. It the vertically towards the ground. The mass of the load is 120 g. Air resistance is negligible. | | | | | | 1 | Calculate the velocity <i>V</i> of the load just before it hits the ground. | V = ms ⁻¹ [2] | | | | | 2 | The load hits the ground and comes to rest in a time interval of 25 ms. | | | | | | Calculate the average force F exerted by the ground on the load. | F = N [2] | | | | | | | | | 21 Fig. 21 shows the drum of a washing machine. Fig. 21 The clothes inside the drum are spun in a vertical circular motion in a clockwise direction. | (a) When the drum is at rest, the weight of the clothes is equal to the normal contact force clothes at point A. | | | | |--|--|--|--| | | Explain why these two forces are not an example of Newton's Third Law of motion. | | | |
 |
 | |------|---------| |
 |
 | |
 |
 | |
 |
 | |
 |
[2] | (b) The drum has diameter $0.50\,\mathrm{m}$. The manufacturer of the washing machine claims that the drum spins at 1600 ± 100 revolutions per minute. Calculate the speed of rotation of the drum and the absolute uncertainty in this value. speed = $$\pm$$ ms^{-1} [3] | (c) | The washing machine is switched off and the speed of the drum slowly decreases. The clothes at the top of the drum at point $\bf B$ start to drop off at a certain speed $\bf v$. | |-----|--| | | At this speed v , the normal contact force on the clothes is zero. | | | Calculate the speed <i>v</i> . | v = ms ⁻¹ [3] | | | | 22 (a) A helium atom **X** travelling at 610 m s⁻¹ makes an elastic collision with a stationary helium atom **Y**. The magnitude of the velocity of **X** after the collision is 258 m s⁻¹. The directions of the velocities of **X** and **Y** are as shown in Fig. 22. Fig. 22 Calculate the magnitude of the momentum p of **Y** after the collision. | | G | |------|---| | (i) | Explain what is meant by an elastic collision. | | | | | | | | (ii) | The mass of a helium atom is 6.64×10^{-27} kg. | | n = | kams ⁻¹ [3] | |-----|------------------------| (b)* There is a lot of helium in the Universe. This was also true of the Earth when it was formed billions of years ago. However, only small traces of helium are now found in the atmosphere of the Earth. Use the kinetic theory of gases to explain why only small amounts of helium are found in the Earth's atmosphere. Use the information below to do suitable calculations to support your answer. - typical atmospheric temperature = 10 °C - mass of helium atom = 6.64×10^{-27} kg - escape velocity from the Earth = 11 km s⁻¹ | [6] | |-----| | | | | 25 | |----|-----|------|---| | 23 | (a) | | cording to the Cosmological principle, the Universe is isotropic, homogeneous and the s of physics are universal. | | | | Sta | te what is meant by the term <i>homogeneous</i> . | | | | | | | | | | [1] | | | (b) | gala | ronomers often use absorption spectral lines to determine the relative velocity of distant axies. The wavelength of a specific absorption spectral line observed in the laboratory is nm. | | | | | e galaxy RXJ1242-11 is 200 Mpc away from the Earth and it has a massive black hole at centre. | | | | (i) | Calculate in nm the wavelength λ of the same spectral line from RXJ1242-11 when observed from the Earth. Assume the Hubble constant is $68\mathrm{kms^{-1}Mpc^{-1}}$. | λ = nm [3] | | | | (ii) | State one of the characteristics of a black hole. | | | | | | | | | | [1] | | (c) | The Universe evolved from the Big Bang. | | | | |-----|---|--|--|--| | | Describe the evolution of the Universe up to the formation of the first nuclei. | r _A | | | | 24 A group of students are conducting an experiment to determine the wavelength of monochromatic light from a laser. Fig. 24.1 shows the laser beam incident normally at a diffraction grating. Fig. 24.1 The students use a diffraction grating with 600 lines mm^{-1} . They vary the distance x between the grating and the screen from 1.000 m to 2.000 m. They measure the distance y from the **central** maximum to the **second order** maximum. (a) The students decide to plot a graph of y against $\sqrt{x^2 + y^2}$. Show that the gradient of the graph is equal to $\sin \theta$, where θ is the angle between the central maximum and the **second** order maximum. **(b)** Fig. 24.2 shows the graph plotted by the students. Fig. 24.2 (i) Use Fig. 24.2 to determine an accurate value of the wavelength λ of the light from the laser. | 111 [3] | |-------------| | | | | | [1] | | otractor to | | | | [1] | | | ### **ADDITIONAL ANSWER SPACE** | If additional space is required, you should use the following lined page(s). The question number(s must be clearly shown in the margin(s). | | | | | |--|---|-------|--|--| ••••• | I | | | | | | D | | | | ### Copyright Information OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE. OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.