GCE

Physics A

H556/02: Exploring physics
Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Here are the subject specific instructions for this question paper.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

SIGNIFICANT FIGURES

If the data given in a question is to 2 sf, then allow an answer to 2 or more significant figures.
If an answer is given to fewer than 2 sf , then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.

Annotations available in RM Assessor

Annotation		Meaning
\checkmark	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
3	Incorrect response	Used to indicate an incorrect answer or a point where a mark is lost.
AE	Arithmetic error	Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.
ECF	Error carried forward	Used in numerical answers only, unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.
L1	Level 1	L 1 is used to show 2 marks awarded and $\mathrm{L} 1^{\wedge}$ is used to show 1 mark awarded.
L2	Level 2	L 2 is used to show 4 marks awarded and L2^ is used to show 3 marks awarded.
L3	Level 3	L3 is used to show 6 marks awarded and L3^ is used to show 5 marks awarded.
POT	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEEN	Seen	To indicate working/text has been seen by the examiner.
SF	Error in number of significant figures	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. Penalised only once in the paper.
TE	Transcription error	This error is when there is incorrect transcription of the correct data from the question, graphical read-off, formulae booklet or a previous answer. Do not allow the relevant mark and then follow through the working giving ECF for subsequent marks.
XP	Wrong physics or equation	Used in numerical answers only, unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
\wedge	Omission	Used to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
Reject	alternative and acceptable answers for the same marking point
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

SECTION A

Question	Answer	Marks	
1	C	1	
2	D	1	
3	B	1	
4	C	1	
5	A	1	
6	B	1	
7	C	1	
8	B	1	
9	D	1	
10	C	1	
11	B	1	
12	A	1	
13	A	1	
14	B	1	
15	B	1	
		15	

SECTION B

General rule: For substitution into an equation, allow any subject - unless stated otherwise in the guidance

Question			Answer	Marks	Guidance
16	(a)		time	B1	Allow t but not T Ignore any correct unit given with the correct label Not a wrong unit with the correct label, e.g t / m (CON) Not just a unit of time, e.g. second
	(b)		$\begin{aligned} & (v=\text { distance/time }) v=\frac{\lambda}{T} \\ & f=\frac{1}{T} \text { and } v=f \lambda \end{aligned}$ or There are f wavelengths per unit time $v=$ distance travelled per unit time and $v=f \times \lambda$	M1 A1 M1 A1	Allow '(distance travelled is) λ in one period / T Not t for T Allow '...in 1 s' instead of 'per unit time' Allow λ / 'waves'; not cycles / oscillations instead of wavelengths
	(c)	(i)	$\begin{aligned} & (\text { speed in material }=) \frac{3.0 \times 10^{8}}{1.20} \text { or } 2.5 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \left(t_{\mathrm{V}}=\right) \frac{1.5 \times 10^{-6}}{3.0 \times 10^{8}} \quad \text { or } 5.0 \times 10^{-15}(\mathrm{~s}) \\ & \left(t_{\mathrm{M}}=\right) \frac{1.5 \times 10^{-6} \times 1.20}{3.0 \times 10^{8}} \text { or } 6.0 \times 10^{-15}(\mathrm{~s}) \\ & t=[6.0-5.0] \times 10^{-15}=1.0 \times 10^{-15}(\mathrm{~s}) \end{aligned}$	C1 C1 C1 A0	Allow other correct methods Note omitting or incorrect use of 1.2 is XP Allow 1 SF answer 5×10^{-15} Allow 1 SF answer 6×10^{-15} Note this also scores the first C1 mark Note omitting or incorrect use of 1.2 is XP
		(ii)	$\begin{aligned} & (f=) \frac{3.0 \times 10^{8}}{6.0 \times 10^{-7}} \text { or } 5.0 \times 10^{14}(\mathrm{~Hz}) \quad \text { or }(T=) \frac{6.0 \times 10^{-7}}{3.0 \times 10^{8}} \\ & T=2.0 \times 10^{-15}(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow 1 SF of 2×10^{-15} Allow 1 mark for $2.4 \times 10^{-15}(\mathrm{~s}) ; 2.5 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ used

Question	Answer	Marks	Guidance
(iii)	$\phi=180^{\circ}$	B1	Possible ECF from (i) and (ii) Note answer must be $\phi=(c)(i) \times 360^{\circ} /(\mathbf{c})$ (ii) Not an answer in rad, e.g. π rad
(d)*	Level 3 (5-6 marks) Clear description and clear analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description or Clear analysis or Some description and some analysis There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description or Limited analysis There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1× 6	Use level of response annotations in RM Assessor Indicative scientific points may include: Description - Method for creating wave / pulse, e.g. lifting and releasing tray, dropping a ball into the water, rippletank arrangement, etc. (Details not expected) - speed $=$ distance \div time or $v=x \div t$ or $v=f \lambda$ - Measure distance travelled using a ruler - Use a stopwatch / timer/ video technique / strobe to measure time / frequency - Measure the depth of water using a ruler etc - Record / measure / determine v for different d - Repeat to find average v Analysis - Plotting a graph, e.g. v against $\sqrt{ } d$ or v^{2} against d or $\lg v$ against lgd etc. - Correct determination of g from straight-line graph or - Table with v and $\sqrt{ } d$ or v^{2} and d - Correct calculation of average value of g from the table
	Total	15	

Question			Answer	Marks	Guidance
17	(a)	(i)	'Inverted' graph	B1	Ignore amplitude
		(ii)	Nodes shown correctly	B1	Expect at least 2 nodes labelled \mathbf{N} No mark if the labels \mathbf{N} are omitted Note the nodes must be on the original graph and not that sketched in (a)(i)
	(b)		Correct relationship between length of tube and λ for at least two stationary waves speed $/ v$ is constant or $f \lambda=$ constant or $f \propto 1 / \lambda$ Calculation comparing at least two stationary waves to show $f \lambda=$ constant or $f \propto 1 / \lambda$	B1 B1 B1	Allow L for length of tube Example $L=\lambda / 4$ at $60 \mathrm{~Hz}, L=3 \lambda / 4$ at 180 Hz $L=5 \lambda / 4$ at 300 Hz Allow $\lambda / 4$ linked to $60(\mathrm{~Hz})$ etc on diagram or in text Not just f increases λ decreases Note - calculation can also score the previous B1 mark E.g f increases by a factor of 5 (from 60 Hz to 300 Hz) and λ decreases by the same factor (of 5)
			Total	5	

Question			Answer	Marks	Guidance
18	(a)		Sum of e.m.f(s) is equal to the sum of p.d.(s) (in a loop of a circuit) Energy is conserved	B1	Allow total / Σ instead of 'sum' Allow voltage instead of p.d. Notsum of $I R \ldots$. unless I and R are defined Expect 'sum' at least once in the statement Not $\Sigma E=\Sigma V$, unless V and E are defined
	(b)		$L \rightarrow[\mathrm{~m}]$ and $A \rightarrow\left[\mathrm{~m}^{2}\right]$ or $L / A \rightarrow\left[\mathrm{~m}^{-1}\right]$ $\mathrm{kg} \mathrm{m}^{3} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow $\frac{\mathrm{kg} \mathrm{m}^{3}}{\mathrm{~s}^{3} \mathrm{~A}^{2}}$ or $\mathrm{kg} \mathrm{m}^{3} / \mathrm{s}^{3} \mathrm{~A}^{2}$
	(c)	(i)	Line of best fit drawn gradient $=2.8$	B1 B1	Expect the extrapolated line to have a y-intercept in the range 0.60 to 0.85 and at least one data point on each side of the line Allow gradient of line in the range 2.60 to 3.00
		(ii)	$E=I(r+R)$ and $R=\rho L / A$ $\frac{1}{I}=\frac{r}{E}+\frac{\rho}{A E} L$ (and comparison with $y=m x+c$ leads to gradient $\left.=\frac{\rho}{A E}\right)$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow $E=V+I R$ and $R=\rho L / A$
		(iii)	$\begin{aligned} & (\rho=\text { gradient } \times A E) \\ & \rho=2.8 \times \pi \times\left(0.19 \times 10^{-3}\right)^{2} \times 1.5 \\ & \rho=4.8 \times 10^{-7}(\Omega \mathrm{~m}) \end{aligned}$	C1 A1	Possible ECF from (i) Note not using $A=\pi r^{2}$ is wrong physics (XP) Allow 1 mark for 1.9×10^{-6}, diameter used instead of radius
		(iv)	The graph / points just shift horizontally (AW) The gradient is unchanged (and ρ will be the same)	B1 B1	Allow shifted to the right or left / 'systematic error' / zero error / change in length stays the same / 'no change in vertical values'
			Total	12	

Question			Answer	Marks	Guidance
19	(a)		$\begin{aligned} & \text { current }=0.01(\mathrm{~A}) \\ & \text { p.d. }=0.01 \times 50(=0.50 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(b)		$\begin{aligned} & \left(V_{75}=\right) 0.5+2.5(\mathrm{~V}) \text { or }\left(R_{\text {LED }}\right)=250(\Omega) \text { or }\left(R_{\mathrm{p}}=\right) 60(\Omega) \\ & \left(I_{100}=\right) 0.05(\mathrm{~A}) \\ & (E=3.0+0.05 \times 100) \\ & E=8.0(\mathrm{~V}) \end{aligned}$	C1 C1 A1	Allow other correct methods Note there is no ECF from (a) Allow 1 SF for the p.d. of $3(\mathrm{~V})$ There is no ECF here from wrong physics (XP) from the parallel network Allow 1 SF answer of 8
	(c)	(i)	$\begin{aligned} & (P=) 0.01 \times 2.5 \text { or } 0.01^{2} \times 250 \text { or } 2.5^{2} / 250 \text { or } 0.025(\mathrm{~W}) \\ & \left(E_{\text {photon }}=\right) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{4.7 \times 10^{-7}} \text { or } 4.23 \times 10^{-19}(\mathrm{~J}) \\ & \text { (number per second }=\frac{0.025}{4.23 \times 10^{-19}} \text {) } \\ & \text { number per second }=5.9 \times 10^{16}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	Allow $4.0 \times 10^{-19}(\mathrm{~J})$; which is 2.5 eV Note using $4.0 \times 10^{-19}(\mathrm{~J})$ gives $6.25 \times 10^{16}\left(\mathrm{~s}^{-1}\right)$
		(ii)	$\left(E_{\text {photon }}=\right) 2.64(\mathrm{eV}) \quad$ or $(\phi=) 3.68 \times 10^{-19}(\mathrm{~J})$ or $\left(f_{0}=\right) 5.55 \times 10^{14}(\mathrm{~Hz})$ or $\left(\lambda_{0}=\right) 5.40 \times 10^{-7}(\mathrm{~m})$ Photoelectrons are emitted and 2.6(4) > 2.3 or $4.23 \times 10^{-19}>3.68 \times 10^{-19}$ or $6.38 \times 10^{14}(\mathrm{~Hz})>5.55 \times 10^{14}(\mathrm{~Hz})$ or $4.7 \times 10^{-7}(\mathrm{~m})<5.40 \times 10^{-7}(\mathrm{~m})$	M1 A1	Possible ECF from (i) Allow $2.6(\mathrm{eV})$ or $3.7 \times 10^{-19}(\mathrm{~J})$ Allow $2.5(\mathrm{eV})$ as the energy of the photon Note the conclusion must be consistent with (i) Allow $h f>\phi$ Note this can be implied by calculating the KE of the emitted electron
			Total	10	

Question			Answer	Marks	Guidance
20	(a)		$\begin{aligned} & F=B Q v \text { and } F=m v^{2} / r \text { or } B=m v / Q r \text { (Any subject) } \\ & (B=) \frac{1.4 \times 10^{-25} \times 4.8 \times 10^{4}}{1.6 \times 10^{-19} \times 0.18} \\ & B=0.23(\mathrm{~T}) \end{aligned}$	C1 C1 A1	Allow e
	(b)	(i)	Electron and (electron) antineutrino	B1	Allow beta-minus (particle) / $\beta^{-} ; \bar{v}_{(\mathrm{e})}$ Allow anti electron neutrino
		(ii)	$\begin{aligned} & \lambda=\ln 2 / 49 \quad \text { or } \quad \lambda=0.0141\left(\text { billion } \mathrm{y}^{-1}\right) \\ & 0.95=\mathrm{e}^{-0.0141 t} \text { or } 0.95=\mathrm{e}^{-4.48 \times 10^{-19} t} \\ & (\text { age }=-\ln (0.95) / 0.0141) \\ & \text { age }=3.6(\text { billion years }) \end{aligned}$	C1 C1 A1	Allow $\frac{\ln 2}{49 \times 10^{9} \times 3.16 \times 10^{7}}$ or $4.48 \times 10^{-19}\left(\mathrm{~s}^{-1}\right)$ Allow both C 1 marks for $\ln (0.95)=\ln (0.5) \times t / 49$ Allow $0.05 / 0.0141 \approx t$ (this gives 3.5.. for the final mark) Note age in seconds is $1.15 \times 10^{17}(\mathrm{~s})$; this will score 2 marks
			Total	7	

Question			Answer	Marks	Guidance
21	(a)	(i)	Too many $N /$ neutrons	B1	Allow 'neutron-rich' or (for stability) neutron changes to proton or (for stability) charge increases / Z changes to 8 Allow too few protons / 'proton-poor'
		(ii)	Too few $N /$ neutrons	B1	Allow 'neutron-poor' or (for stability) proton changes to neutron or (for stability) charge decreases / Z changes to 6 Allow too many protons / 'proton-rich'
	(b)	(i)	More neutrons produced (from each fission reaction) Go on to produce further (fission) reactions / splitting (of nuclei) / energy	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
		(ii)	Control rod(s) used These absorb the neutrons (without fission)	B1 B1	Allow boron / cadmium / indium / silver Not moderator Not neutrons slowed down and/or stopped
		(iii)	$\begin{aligned} & (\Delta m=) 0.190 \times 1.66 \times 10^{-27} \text { or } 3.15 \times 10^{-28}(\mathrm{~kg}) \\ & (\Delta E=) 0.190 \times 1.66 \times 10^{-27} \times\left(3.0 \times 10^{8}\right)^{2} \text { or } 2.84 \times 10^{-11}(\mathrm{~J}) \\ & \frac{1.00}{0.235} \times 6.02 \times 10^{23} \text { or } 2.56 \times 10^{24} \\ & \left(\text { energy }=0.03 \times 2.56 \times 10^{24} \times 2.84 \times 10^{-11}\right) \\ & \text { energy }=2.2 \times 10^{12}(\mathrm{~J}) \end{aligned}$	C1 C1 C1 A1	Note the 3.0\% can be done at any stage, allow other correct methods Allow the use of 1.67×10^{-27} Allow ECF from 1.66×10^{-27} omitted Note 7.69×10^{22} will score this C1 mark; 3.0% included Allow 3 marks for $7.3 \times 10^{13}(\mathrm{~J}) ; 3.0 \%$ omitted Allow 3 marks for $1.3 \times 10^{39}(\mathrm{~J}) ; 1.66 \times 10^{-27}$ omitted
			Total	10	

Question			Answer	Marks	Guidance
22	(a)	(i)	Qd = constant At least two pairs of values substituted to show that $Q d=$ constant	C1	Allow straight-line graph of Q against 1/d passes through the origin Allow as d increases by a given factor (e.g. doubles) then Q decreases by the same factor (e.g. halves) Allow numbers that show when d doubles then Q halves Ignore prefixes and POT errors
		(ii)	$Q=V C \text { and } C=\frac{\varepsilon_{0} A}{d}$ Hence $Q=\frac{V \varepsilon_{0} A}{d}\left(\right.$ and $\left.Q \propto \frac{1}{d}\right)$	C1 A1	Allow ε Note Q, or Q / V must be the subject here Allow $Q \propto C$ and $C \propto \frac{1}{d}$
	(b)	(i)	$1.8 \times 10^{-14}(\mathrm{~N})$	B1	Ignore sign
		(ii)	$\begin{aligned} & \left(F_{\mathrm{E}}=\right) 3 \times 1.8 \times 10^{-14}(\mathrm{~N}) \text { or }\left(F_{\mathrm{E}}=\right) 5.4 \times 10^{-14}(\mathrm{~N}) \\ & \text { or } \quad(\text { mass }=) \frac{1.8 \times 10^{-14}}{g} \\ & \text { (resultant force } \left.=3.6 \times 10^{-14} \mathrm{~N}\right) \\ & (a=) \frac{3.6 \times 10^{-14}}{\left(1.8 \times 10^{-14} / g\right)} \\ & a=20\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 C1 A1	Note this mark is for either electric force on the oil drop or the calculating the mass of the oil drop Allow for ECF from (b)(i) Allow $g=9.8$, but not $g=10$ Note answer to 3SF is 19.6 Allow 2 marks for $a=2 g$ Note a bald answer of 20 will score 3 marks, if however, we see evidence for $g=10$, then maximum score will be 2 mark

Questi	Answer	Marks	Guidance
(c)*	Level 3 (5-6 marks) Clear description and at least two from control of variables There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description and at least one from control of variables There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Any description but no control of variables or Limited mention of control of variable(s) There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1× 6	Use level of response annotations in RM Assessor Indicative scientific points may include: Description - $E=V / d$ - Voltmeter used to measure p.d. - Ruler used to measure separation d plates - Plastic rod held in a stand - Safety: Do not touch the terminals of high-voltage supply / (positive) plate - Vary d or V to change E - $\quad \theta$ determined for each value of E - Experiment repeated for several values of E - Sensible techniques used to determine θ, e.g. use a protractor - Plot $\tan \theta$ against E or $\tan \theta$ against $1 / d$ graph - Straight line through origin (expected) Control of variables - Charge q kept constant (ignore method) - Method for keeping q constant (e.g. same V for the (positive) plate, use separate constant voltage supply, etc) - Use the same foil / keep W the same - Keep d or V constant - Foil in between plates (where the field is uniform) - Draught-free room - Do the experiment quickly to avoid leakage of charge
	Total	14	

Question		Answer	Marks	Guidance
23	(a)	(Evacuated tube with) cathode / heater / filament and target / metal / anode High voltage (supply) connected between cathode and anode (Accelerated) electrons hit the target / metal / anode and their KE is transformed into X-ray (photons)	B1	Ignore polarity of high voltage supply throughout Note the first two B1 marks can be scored on a labelled diagram Allow a specific value in the range 10 kV to 1 MV Note expecting 'high' or qualified by values in range above
	(b)	Any two from: Photoelectric (effect) Photon (is absorbed and an) electron removed (from the atom) Compton (scattering / effect) Photon scattered / deflection with longer wavelength / low frequency / low energy and electron removed (from the atom) Pair production Photon (absorbed) and produce electron-positron (pair)	M1 A1 M1 A1 M1 A1	Ignore if interaction between photons and electrons is not one-to-one Not X-ray wave etc; must refer to photon Not reflected Not X-ray wave etc; must refer to photon Not X-ray wave etc; must refer to photon
		Total	7	

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{2 4}$ | (a) | $\begin{array}{l}\text { Piezoelectric (effect) mentioned } \\ \text { An alternating p.d. applied to the film / crystal produces } \\ \text { vibrations / resonance (and this in turn produces ultrasound) }\end{array}$ | B1 | $\begin{array}{l}\text { Allow 'applied p.d. changes the shape of a crystal / } \\ \text { film' }\end{array}$ |
| Allow alternating current / a.c. | | | | |
| Allow expand and contract for vibrations (AW) | | | | |
| Allow a named film / crystal | | | | |$]$

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Cambridge
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

