Oxford Cambridge and RSA

GCE

Physics A

H556/03: Unified physics
Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Here are the subject specific instructions for this question paper.

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

SIGNIFICANT FIGURES

If the data given in a question is to 2 sf, then allow an answer to 2 or more significant figures.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance.

Annotations available in Scoris:

Annotation	Meaning	
AE	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
Ancorrect response	Used to indicate an incorrect answer or a point where a mark is lost.	
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.
ECF if there are no further errors.		

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
not	alternative and allowable answers for the same marking point
Ignore	Answers which are not worthy of credit and which negate an otherwise correct answer. Sometimes written as do not allow.
Allow	Statements which not worthy of credit
()	Answers that can be allowed
ECF	Underlined words must be present in answer to score the mark
AW	Error carried forward
ORA	Alternative wording

Question		Answer	Marks	Guidance
1 (a)		$\begin{aligned} & n(=p V / R T)=2.4 \times 10^{5} \times 1.2 \times 10^{-3} / 8.31 \times \underline{290} \\ & n=0.12(\mathrm{~mol}) \end{aligned}$	C1 A1	Allow any correct rearrangement of the equation Allow use of $p V=N k T$ and $n=N k R$ or $n=N / N_{A}$ $(n=0.1195)$
(b)		$\left\{\begin{array}{l} p V=\text { constant }\left(\text { or } p_{1} V_{1}=p_{2} V_{2}\right) \\ p_{\text {final }}=2.4 \times 10^{5} \times 1.2 / 1.5 \\ =1.9(2) \times 10^{5}(\mathrm{~Pa}) \end{array}\right.$	C1 C1 A1	Alternative method: $p=n \mathrm{RT} / V$ (p must be the subject) Allow use of $p=N \mathrm{k} T / V$ (with $N=7.2 \times 10^{22}$ and $\mathrm{k}=1.38 \times 10^{-23}$) Substitute $p=0.12 \times 8.31 \times 290 / 1.5 \times 10^{-3}$ ECF from 1a for incorrect n and/or T $p=1.9(3) \times 10^{5}(\mathrm{~Pa})$
(c)	(i)	$\Delta p=(2.4-1.0) \times 10^{5}=1.4 \times 10^{5}(\mathrm{~Pa})$ upwards force $(=\Delta p A)=(2.4-1.0) \times 10^{5} \times 1.1 \times 10^{-4}$ $=15(\mathrm{~N})$	C1 C1 A0	Alternative method: Downwards force (from trapped air) $=p A=2.4 \times 10^{5} \times 1.1 \times 10^{-4}$ $=26.4(\mathrm{~N})$ and upwards force (from atmosphere) $=p A=1.0 \times 10^{5} \times 1.1 \times 10^{-4}=$ 11.0 (N) So total upwards force $=26.4-11.0$ $=15.4(\mathrm{~N})$ Ignore any attempt to calculate weight Special case: Allow $1 / 2$ for the use of $\Delta p=2.4 \times 10^{5}(\mathrm{~Pa})$ giving upwards force $=26.4(\mathrm{~N})$

Questio		Answer		Guidance
	(ii)	$m=0.3+0.05(=0.35)(\mathrm{kg})$ (Resultant force = upwards force $-W=m a$) $15.4-(0.35 \times 9.81)=0.35 a$ or $a=12 / 0.35$ $a=34\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	C1 C1 A1	$0.050+\left(10^{3} \times 0.3 \times 10^{-3}\right)$ Alternative approach: $a=(15.4 / m)-\mathrm{g}$ ECF for incorrect value of m No ECF ci (since we are told that upwards force $=15(.4)(\mathrm{N})$) Upwards force $=15(\mathrm{~N})$ gives $a=33\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
(d)		- (initial) upward force unchanged - (initial) downwards force/weight increases - (initial) resultant force decreases - (initial) acceleration decreases - (initial) rate of change in momentum of rocket decreases - time taken to expel water increases - valid conclusion that the maximum height depends on more than one factor	$\begin{gathered} \mathrm{B} 1 \mathrm{x} \\ 3 \end{gathered}$	Maximum 3 marks from 7 marking points: Ignore comments which assume an increase in pressure Ignore heavier Allow net or unbalanced or total for resultant Allow fuel for water e.g. the height depends on the bottle's velocity and its height when all the water has been expelled / the height depends on both the acceleration and the time taken to expel the water
		Total	13	

Question		Answer	Marks	Guidance
(b)	(i)	$\begin{aligned} & Q=9.0 \times 10^{-3} \times 2 \times 80=1.44(\mathrm{C}) \\ & W=\left(Q^{2} / 2 C=\right) 1.44^{2} / 2 \times 0.12 \\ & W=8.6(4)(\mathrm{J}) \end{aligned}$	C1 C1 A1	ECF for incorrect Q e.g. $2 / 3$ for use of $Q=0.72(\mathrm{C})$ giving $W=2.2(\mathrm{~J})$
	(ii)	$\begin{aligned} & (W=P t \text { so } 8.6=0.050 t) \\ & t=8.6 / 0.050=170(\mathrm{~s}) \end{aligned}$	A1	ECF (b)(i) for incorrect W
(c)		see page 14	B1 $\times 6$	
			13	

	uest	Answer	Marks	Guidance
3	(c)	Level 3 (5-6 marks) Clear determination of input energy, procedure and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is clear, relevant and substantiated. Level 2 (3-4 marks) Clear determination of input energy and procedure, but no analysis or Clear analysis but limited determination of input energy and/or limited procedure or Attempted determination of input energy, basic procedure, and an attempt at analysis There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) A limited selection from the scientific points worthy of credit. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1 x 6	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Candidates can gain full credit for investigating the efficiency of either: Method 1(M1): GPE (nmgh) to energy conversion in LED (Pt) or Method 2(M2): GPE (nmgh) to energy stored in capacitor ($1 / 2 C V^{2}$ or $1 / 2 Q^{2} / C$) L1 maximum for any answers which do not use GPE as input energy Indicative scientific points may include: Determination of input energy - record the number of inversions, n - (use electronic / top pan balance to) measure mass of magnet m - (use mm ruler to) measure tube length I_{t} and magnet length I_{m} - calculate $h=I_{\mathrm{t}}-I_{\mathrm{m}}$ - calculate (GPE =) nmgh Procedure - invert torch n times (with torch switched off) - make sure that the magnet falls the full height h between inversions - M1 switch torch on and (use stopwatch to 0.1 s to) measure time t taken until LED goes out (use video with timer for greater accuracy) - M1 use a darkened room or view LED through tube - M2 (use voltmeter across capacitor to) measure final p.d. V_{f} - M2 (with coulombmeter) measure final charge Q_{f} stored by capacitor - repeat experiment for different n Analysis of efficiency - M1 calculate $W=$ Pt where $P=50 \mathrm{~mW}$ - M2 calculate $W=1 / 2 C V_{f}^{2}$ or $1 / 2 Q_{f}^{2} / C$ - calculate efficiency $=W / n m g h$ - compare efficiency values for different n - plot suitable graph e.g. efficiency against n / W against $n m g h$ - plot t against n (M1)/ V^{2} or Q^{2} against n (M2) with justification - discuss shape / gradient of graph

Question			Answer	Marks	Guidance
4	(a)		$\begin{aligned} & W(=m g)=8.0 \times 9.81 \\ & F=(W \sin 30=78.5 \times 0.5=) 39(\mathrm{~N}) \\ & R=(W \cos 30=78.5 \times 0.87)=68(\mathrm{~N}) \end{aligned}$	$\begin{gathered} \text { C1 } \\ \text { A1 } \times 2 \end{gathered}$	$=78(.5)(\mathrm{N})$ not $80(\mathrm{~N})$ Allow 8g Allow $1 / 2$ for F and R the wrong way round Credit full marks for use of a scale drawing which gives answers correct to $\pm 2 \mathrm{~N}$ Special case: Allow $2 / 3$ for use of $W=80(\mathrm{~N})$ giving $F=40(\mathrm{~N})$ and $R=$ 69 (N)
	(b)	(i)	$\begin{aligned} & F=\left(m v^{2} / r=\right) 8.0 \times 1.5^{2} / 2.0 \\ & F=9.0(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow answer to 1s.f.

H556/03		Mark Scheme June 2019		
Questi		Answer	Marks	Guidance
(b)	(ii)	- Suitcase accelerates / changes its velocity / (constantly) changes direction / has a resultant force acting on it / is no longer in equilibrium - The resultant force must act (horizontally) towards centre of circle / to the left - The centripetal force can only be provided by (an increase in) F - Increased vertical component of F means the vertical component of R must decrease (in order to balance W) So R must decrease	B1 4	Any answer that mentions centrifugal force scores 0/4 Ignore any statement that treats the centripetal force as an extra force Allow net or unbalanced or total for resultant throughout or $F \cos 30^{\circ}-R \sin 30^{\circ}$ increases (from 0 to $9.0(\mathrm{~N})$) / the (magnitude of the) horizontal component of F must exceed the (magnitude of the) horizontal component of R not a resultant force acts towards \mathbf{Y} e.g. Friction is the only force able to provide the centripetal force / only F has a component to the left Allow F provides the centripetal force Not the horizontal force must increase / increases or $F \sin 30^{\circ}+R \cos 30^{\circ}=W / W$ is the vector sum of F and $R /$ $W=\left(F^{2}+R^{2}\right)^{1 / 2}$ (and F increases while W remains constant)
		Total	9	

	uest	Answer	Marks	Guidance
5	(a)	Level 3 (5-6 marks) Clear procedure or correct determination of wavelength, plus reasonable estimation of uncertainty in λ or $(\sin) \theta$ There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Description of procedure or correct determination of λ, but no estimation of uncertainty or Clear estimation of uncertainty in wavelength but limited description of procedure and/or determination of λ or $(\sin) \theta$ or Some description of procedure, an attempt to determine the wavelength, and an attempt to estimate uncertainty in some of the measurements (e.g. in x) There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) A limited selection from the scientific points worthy of credit. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1 x 6	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. L1 maximum for any answers which use formula $\lambda=a x / D$ Indicative scientific points may include: Procedure - use formula $n \lambda=d \sin \theta$ - $n=1$ since first order spectrum - find d using number of lines $/ \mathrm{mm}=300 \mathrm{~mm}^{-1}$ - find θ using distance of grating from plastic ruler $=0.50 \mathrm{~m}$ and $x=0.10 \mathrm{~m}$ (not protractor) Determination of wavelength - calculate $d\left(=10^{-3} / 300\right)=3.3 \times 10^{-6} \mathrm{~m}$ - use $x=0.10 \mathrm{~m}$ and distance to grating $=0.50 \mathrm{~m}$ to calculate $\tan \theta$ (= 0.2) - $\theta=11.3^{\circ}$ - $\sin \theta=0.196$ - alternatively, calculate hypotenuse of triangle (using Pythagoras's theorem $)=0.51 \mathrm{~m}$, giving $\sin \theta\left(=0.10 / 2600^{1 / 2}\right)=0.196$ - allow use of small angle rule $(\sin \theta \approx \tan \theta \approx \theta=0.2)$ - calculate $\lambda\left(=0.196 \times 10^{-3} / 300\right)=650 \mathrm{~nm}$ Estimation of uncertainty - negligible uncertainty in $d($ and n) - uncertainty in $\sin \theta$ is found using uncertainty in distance measurements - uncertainty in each distance measurement is $\pm 1.0 \mathrm{~mm}$ or ± 0.5 mm or $\pm 2.0 \mathrm{~mm}$ - maximum \% uncertainty in $\tan \theta / \theta / \sin \theta=3 \%$ - so \% uncertainty in $\lambda=\%$ uncertainty in $\sin \theta=3 \%$

Question		Answer	Marks	Guidance	
$\mathbf{5}$	(b)	(i)	$E=(h c / \Lambda)=6.63 \times 10^{-34} \times 3(.00) \times 10^{8} / 486 \times 10^{-9}$ $E=4.09 \times 10^{-19}(\mathrm{~J})$	$\mathbf{M 1}$	This is a 'show that' question so the mark is for giving the full substitution of values leading to an answer correct to 3 SF
		(ii)	(vertical) arrow pointing downwards from -1.36 to -5.45	B1	
			B1		

H556/03		Mark	Answer Mark Scheme	June 2019
Question		Answer	Marks	Guidance
(c)	(i)	$\begin{aligned} & T=0.50(\mathrm{~s}) \quad \text { or } \quad f=2.0(\mathrm{~Hz}) \\ & v=(2 \pi r / T=) 2 \pi \times 0.60 / 0.5 \\ & v=7.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$	Allow $1.2 \pi / 0.5$ or 2.4π $=7.54\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Alternative method: $\begin{aligned} & \hline \omega=4 \pi \text { or } 12.6\left(\text { rad s }^{-1}\right)(\mathbf{C} 1) \\ & v(=r \omega)=0.60 \times 12.6 \text { or } 2.4 \pi(\mathbf{M} 1) \\ & =7.54\left(\mathrm{~m} \mathrm{~s}^{-1}\right)(\mathbf{A 0}) \end{aligned}$
	(ii)	$\begin{aligned} & \Delta f(\approx v f / c)=(7.5 \times 1700) / 330 \\ & \Delta f=40(\mathrm{~Hz})(\text { or } 39 \mathrm{~Hz}) \end{aligned}$	C1 A1	Note that c represents the velocity of sound
	(iii)	y-axis labelled with correct scale	B1	Allow as a minimum one labelled point i.e. 1740 or 1660 ECF(c)(ii) for incorrect Δf
	(iv)	X labelled at lowest point of circle on Fig. 6.1	B1	
(d)		Accuracy is (a quality denoting) the closeness of the measured value to the true value Precision is (a quality denoting) the closeness of agreement between measured values (obtained by repeated measurements)	B1 B1	Allow readings/results/data/values/measurements for measured value; actual/real/allowed/correct for true Allow measurements are close together/are similar/have small range/have low spread/have low scatter/have good agreement/are all close to the average
		Total	11	

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Cambridge
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

