| Please check the examination details below | before ente | ring your candidate information | |--|-------------|---------------------------------| | Candidate surname | | Other names | | Pearson Edexcel Level 1/Level 2 GCSE (9–1) | e Number | Candidate Number | | Wednesday 12 J | une | 2019 | | Morning (Time: 1 hour 10 minutes) | Paper Re | eference 1SC0/2CF | | Combined Science Paper 5: Chemistry 2 | ! | | | | | Foundation Tier | | You must have:
Calculator, ruler | | Total Marks | ### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided there may be more space than you need. - Calculators may be used. - Any diagrams may NOT be accurately drawn, unless otherwise indicated. - You must show all your working out with your answer clearly identified at the end of your solution. ### Information - The total mark for this paper is 60. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. - In questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate. - A periodic table is printed on the back cover of this paper. ### **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ P60246A ©2019 Pearson Education Ltd. DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA ### Answer ALL questions. Write your answers in the spaces provided. Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . 1 (a) Plants release oxygen into the atmosphere. What is the name of the process that releases oxygen into the atmosphere? (1) - A combustion - **B** oxidation - C photosynthesis - **D** polymerisation - (b) The atmosphere contains 21% of oxygen. - (i) Figure 1 shows an incomplete bar chart of the main gases in the atmosphere. percentage of gas in today's atmosphere Figure 1 Complete the bar chart by showing the percentage of oxygen in the atmosphere. (1) DO NOT WRITE IN THIS AREA | (volumes are measured under | r the same conditions of temperature and pressure) (2) | | |--|--|--| | | volume of oxygen = | | | c) An atom of an element has an ato | | | | | of these to the numbers of subatomic particles it (2) | | | | number of subatomic particles in an atom | | | | • number of protons | | | atomic number • | • number of neutrons | | | | total number of protons and electrons | | | mass number | total number of protons and neutrons | | | | total number of protons, neutrons and electrons | | | d) Which test shows a gas is oxygen A a few drops of limewater will | ? (1) turn cloudy when shaken with the gas | | | ■ B a glowing splint will relight w | | | | ■ C a lighted splint placed in the graph of | | | | D a piece of damp red litmus pa | aper will turn blue when placed in the gas | | | | (Total for Question 1 = 7 marks) | | DO NOT WRITE IN THIS AREA - **2** (a) Complete the following sentences. (1) (ii) The name given to group 0 in the periodic table is (1) (b) Which of the following rows gives the colours of the group 7 elements chlorine and bromine at room temperature? (1) | chlorine | bromine | |--------------|-------------------------------------| | red-brown | purple | | yellow-green | grey | | yellow-green | red-brown | | grey | red-brown | | | red-brown yellow-green yellow-green | (c) Figure 2 shows the melting and boiling points of bromine and iodine. | element | melting point in °C | boiling point in °C | |---------|---------------------|---------------------| | bromine | -7 | 59 | | iodine | 114 | 184 | Figure 2 Using the information in Figure 2, which row shows the physical states of these elements at 50° C? (1) | | | bromine | loaine | |---|---|---------|--------| | X | A | liquid | gas | | X | В | solid | liquid | | X | C | gas | solid | | × | D | liquid | solid | DO NOT WRITE IN THIS AREA WRITE IN THIS AREA DO NOT (d) The densities of some elements in group 0 are shown in Figure 3. | name | density in g cm ⁻³ | |---------|-------------------------------| | helium | 0.15 | | neon | 1.2 | | argon | 1.4 | | krypton | | | xenon | 3.5 | Figure 3 Use the information in Figure 3 to suggest the density of krypton. (1) density of krypton =g cm⁻³ (e) For many years, argon was used to fill filament light bulbs. A filament light bulb is shown in Figure 4. Figure 4 When the bulb is in use the metal filament becomes extremely hot. Explain why argon, rather than air, was used to fill filament light bulbs. (2) | (Total for | Question | 2 = 7 mark | S | |------------|----------|-------------|----------| |------------|----------|-------------|----------| 3 A student poured 50 cm³ water into a beaker and measured the water's temperature. Figure 5 The student added 1.00 g calcium chloride to the water, stirred the mixture and then recorded the temperature. (a) Give the name of the apparatus that could be used to measure 1.00 g of calcium chloride. (1) (b) The student's results were temperature of water at start $= 21 \,^{\circ}\text{C}$ temperature of mixture after stirring $= 32 \,^{\circ}\text{C}$ Explain, using these results, the type of heat energy change that occurs when calcium chloride dissolves in water. (2) THIS AREA - (c) Calcium chloride is hazardous to health. - (i) Which hazard symbol would be expected to be seen on a container of calcium chloride? (1) (ii) Give a safety precaution that the student should take during the experiment. (1) (d) State **one** way in which the apparatus could be changed to reduce the amount of heat energy lost during the experiment. (1) DO NOT WRITE IN THIS AREA | volume of solution | on =cm ³ | |---|---------------------| | | 2 | (3) | | You must show your working. | | | Calculate the volume of this solution, in cm ³ , that contains 9.0 g of ca | lcium chloride. | | (e) The concentration of a calcium chloride solution is $12\mathrm{gdm^{-3}}$. | | | (e) The concentration of a calcium chloride solution is 12 g dm ⁻³ . | | ### DO NOT WRITE IN THIS AREA ## DO NOT WRITE IN THIS AREA ### **BLANK PAGE** DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA 4 The word equation for the reaction between magnesium and dilute hydrochloric acid is magnesium + hydrochloric acid \rightarrow magnesium chloride + hydrogen The reaction was carried out using the apparatus shown in Figure 6. Figure 6 A strip of magnesium ribbon was placed in the conical flask. 100 cm³ of dilute hydrochloric acid was added to the conical flask. The mass of the flask and contents was measured at regular intervals. The loss in mass was calculated. Figure 7 shows a graph of the results. Figure 7 DO NOT WRITE IN THIS AREA | (a) Name the apparatus that could be used to measure out 100 cm ³ of dilute hydronic could be used to measure out 100 cm ³ of dilu | drochloric acid.
(1) | |--|-------------------------| | (b) Explain why there is a loss in mass of the flask and contents. | (2) | | (c) The graph shows that the rate of reaction slows as the reaction takes place. | | | Explain, in terms of particles, why the rate of reaction between magnesium rand dilute hydrochloric acid slows as the reaction takes place. | ibbon
(3) | | | | | (d) The experiment was repeated using the acid at a higher temperature. All other conditions were kept the same. State the effect of the higher temperature on the mass loss after two minute | s. (1) | | | | DO NOT WRITE IN THIS AREA | (f) Some reactions are affected by the presence of a catalyst.(i) State the effect of a catalyst on a reaction. | (1) | |--|--------| | (ii) Devise a simple experiment to find out what happens to the mass of a solid catalyst during a reaction. | (3) | | | | | | | | (Total for Question 4 = 13 | marks) | | | | | | | ### **BLANK PAGE** DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA - **5** Most of the fuels used today are obtained from crude oil. - (a) Which statement about crude oil is correct? (1) - ☑ A crude oil is a compound of different hydrocarbons - **B** crude oil is a mixture of hydrocarbons - C crude oil contains different hydrocarbons, all with the same molecular formula - D crude oil is an unlimited supply of hydrocarbons - (b) Crude oil is separated into several fractions by fractional distillation. Two of these fractions are kerosene and diesel oil. - (i) State a use for each of these fractions. (2) kerosene diesel oil (ii) Figure 8 shows where the fractions kerosene and diesel oil are produced in the fractionating column. Figure 8 Kerosene is obtained higher up the column than diesel oil. Kerosene and diesel oil fractions have slightly different properties. Choose a property. State how this property for kerosene compares with the property for diesel oil. (1) property comparison (c) Figure 9 shows the formulae of a molecule of butane and of a molecule of pentane. Butane and pentane are neighbouring members of the same homologous series. Figure 9 (i) Explain, using these formulae, why butane and pentane are neighbouring members of the same homologous series. (2) (ii) Butane has the formula C₄H₁₀. Calculate the mass of carbon in 100 g of butane. Give your answer to three significant figures. (relative atomic masses: H = 1.00, C = 12.0; relative formula mass: $C_4H_{10} = 58.0$) You must show your working. (3) (iii) Butane burns completely in air to form carbon dioxide and water. Write the word equation for this reaction. (2) (Total for Question 5 = 11 marks) DO NOT WRITE IN THIS AREA **6** (a) An aluminium atom has the atomic number 13 and the mass number 27. Which row shows the numbers of subatomic particles present in an aluminium ion, Al³⁺? (1) | | protons | neutrons | electrons | |-----|---------|----------|-----------| | ⊠ A | 13 | 14 | 13 | | ⊠ B | 13 | 14 | 10 | | ⊠ C | 14 | 13 | 10 | | ⊠ D | 14 | 13 | 17 | (b) Magnesium burns in excess oxygen to form magnesium oxide. The balanced equation for this reaction is $$2Mg + O_2 \rightarrow 2MgO$$ Starting with 1.35g of magnesium, calculate the maximum mass of magnesium oxide that could be formed in this reaction. (relative atomic masses: O = 16.0, Mg = 24.0) You must show your working. (3) mass of magnesium oxide =g (c) Chlorine reacts with hydrogen to form hydrogen chloride. Write the balanced equation for this reaction. (3) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA *(d) Sodium chloride is an ionic compound, containing sodium ions, Na^+ , and chloride ions, Cl^- . Figure 10 shows the electronic configuration of sodium and chlorine. | electron configuration | | |------------------------|-------| | sodium | 2.8.1 | | chlorine | 2.8.7 | Figure 10 Explain how sodium and chlorine atoms form the ions in sodium chloride and how the ions are arranged in the solid sodium chloride. | You may wish to use diagrams in your answer. | (6) | |--|-----| DO NOT WRITE IN THIS AREA |
 | | | |-----------------------------------|--|--| | | | | |
 |
 | | | |
 | | | | | | | | | | | | | | | |
 | | | |
 | (Total for Question 6 = 13 marks) | | | | TOTAL FOR PAPER = 60 MARKS | | | # The periodic table of the elements | 0 | 4
He
helium
2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | |-----------------------|---|--|------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------| | _ | | 19
F
fluorine
9 | 35.5 CI chlorine 17 | 80
Br
bromine
35 | 127
 | [210]
At
astatine
85 | | 9 | | 16
O
oxygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | | 2 | | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | | 4 | | 12
C
carbon
6 | 28
Si
silicon
14 | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207
Pb
lead
82 | | က | | 11
B
boron
5 | 27
Al
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
TI
thallium
81 | | | | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | | | | | | 59
Nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | | | | | | 59
Co
cobait
27 | 103
Rh
rhodium
45 | 192
Ir
iridium
77 | | | 1
H
hydrogen
1 | | | 56
Fe
iron
26 | 101
Ru
ruthenium
44 | 190
0s
0smium
76 | | | relative atomic mass atomic symbol atomic (proton) number | _ | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
menium
75 | | | | | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | | | | | ve atomic
omic syml
name
(proton) n | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | | | relativ
ato | | | relativ
ato | 48
Ti
tttanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | | | | | | 45
Sc
scandium
21 | 89
Y
yttrium
39 | 139
La *
Ianthanum
57 | | 7 | | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | | ← | | 7
Li
lithium
3 | 23
Na
sodium
11 | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | | | | | | | | | * The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.