| Write your name here | | | | | |---|-------------------------|-------------------------|--|--| | Surname | Other nam | nes | | | | Pearson Edexcel
Level 1/Level 2 GCSE (9-1) | Centre Number | Candidate Number | | | | Chemistry Paper 2 | | | | | | | | Higher Tier | | | | Sample Assessment Materials for first Time: 1 hour 45 minutes | teaching September 2016 | Paper Reference 1CH0/2H | | | | | | | | | ### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided there may be more space than you need. - Calculators may be used. - Any diagrams may NOT be accurately drawn, unless otherwise indicated. - You must show all your working out with your answer clearly identified at the end of your solution. ## Information - The total mark for this paper is 100. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - In questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate. # **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ **PEARSON** \$50048A ©2016 Pearson Education Ltd. # Answer ALL questions. Write your answers in the spaces provided. Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ⋈ and then mark your new answer with a cross ⋈. | 1 | Thi | is q | uestion is about changes to the Earth's atmosphere. | | |---|-----|------|---|-----| | | (a) | | nich of the following is a correct statement about the relative amounts of rbon dioxide and oxygen in the Earth's early atmosphere? | (1) | | | X | A | large amount of carbon dioxide and large amount of oxygen | | | | X | В | large amount of carbon dioxide and small amount of oxygen | | | | X | C | small amount of carbon dioxide and large amount of oxygen | | | | X | D | small amount of carbon dioxide and small amount of oxygen | | | | (b) | Se | veral processes change the composition of the Earth's atmosphere. | | | | | | escribe how the composition of the atmosphere is affected by burning sail fuels. | | | | | .00 | | (2) | (c) The graphs in Figure 1 and Figure 2 show the concentration of carbon dioxide in the atmosphere and the mean global temperature between 1960 and 2000. concentration of carbon dioxide / ppm Figure 1 Figure 2 Explain whether these graphs provide evidence that an increase in carbon dioxide is causing the Earth's temperature to rise. (2) (d) Which of these pairs of gases are both greenhouse gases? (1) - A nitrogen and methane - □ B nitrogen and oxygen - □ C oxygen and water vapour - D water vapour and methane (Total for Question 1 = 6 marks) - 2 Magnesium and calcium are in group 2 of the periodic table. They are less reactive than the metals in group 1. - (a) Calcium reacts with water to form calcium hydroxide, Ca(OH)₂, and hydrogen, H₂. $$Ca(s) + 2H2O(I) \rightarrow Ca(OH)2(s) + H2(g)$$ Describe what would be **seen** when a piece of calcium is dropped into a container of water. (2) (b) Magnesium reacts very slowly with cold water but it reacts faster with steam, H₂O, and forms magnesium oxide, MgO, and hydrogen. Write the balanced equation for the reaction between magnesium and steam. (2) (c) The electronic configurations of magnesium and calcium are magnesium 2.8.2 calcium 2.8.8.2 When magnesium and calcium react with water they form positive ions. Suggest an explanation, in terms of their electronic configurations, why calcium is more reactive than magnesium. (2) (d) A sample of calcium bromide contains 0.2 g calcium and 0.8 g bromine by mass. Calculate the empirical formula of calcium bromide. (relative atomic masses: Ca = 40, Br = 80) (3) empirical formula = (Total for Question 2 = 9 marks) **3** Crude oil is a mixture of hydrocarbons. It can be separated into fractions. (a) Which of these mixtures shows formulae of substances that could be in the gaseous fraction of crude oil? (1) - \triangle **A** C_2H_4 , C_3H_8 , $C_4H_{10}O$ - \square **B** C_2H_4 , C_3H_7Br , C_4H_{10} - \square **C** $C_2H_{6'}C_3H_{8'}C_4H_{10}$ - \square **D** C_2H_6 , C_3H_7Br , $C_4H_{10}O$ - (b) Figure 3 shows the percentages of the fractions in crude oil from three different oil wells. | | percentage of fraction in crude oil from | | | |------------|--|------------|------------| | fraction | oil well A | oil well B | oil well C | | gases | 1 | 6 | 9 | | petrol | 2 | 15 | 24 | | kerosene | 6 | 14 | 20 | | diesel oil | 7 | 10 | 16 | | fuel oil | 26 | 28 | 30 | | bitumen | 58 | 27 | 1 | Figure 3 (i) State which oil well contains the greatest combined total of diesel oil and fuel oil. (1) (ii) State which oil well produces a crude oil containing the highest percentage of the high boiling point fractions. (1) (c) Fractions of crude oil contain alkanes. A sample of decane, $C_{10}H_{22}$, cracked using the apparatus in Figure 4. Figure 4 | (i) Explain how ethene is produced using the apparatus in Fig | rigule 4. | |---|-----------| |---|-----------| (3) (ii) One molecule of decane produced two molecules of propene, C_3H_6 , and one molecule of product **Z**. $$C_{10}H_{22} \rightarrow 2C_3H_6 + \text{product } \mathbf{Z}$$ What is the formula of product **Z**? (1) - \square A C_4H_8 - B C₄H₁₀ - C C₇H₁₂ - \square **D** C_7H_{16} (iii) When decane undergoes complete combustion, a mixture of carbon dioxide and water is formed. Complete the balanced equation for this reaction. (2) $$2\mathsf{C}_{\mathsf{10}}\mathsf{H}_{\mathsf{22}} + \dots \quad \mathsf{O}_{\mathsf{2}} \to \dots \quad \mathsf{CO}_{\mathsf{2}} + \dots \quad \mathsf{H}_{\mathsf{2}}\mathsf{O}$$ (Total for Question 3 = 9 marks) 4 Alkanes and alkenes are hydrocarbons. The structure of a molecule of butane is shown. (a) Which of the following is the empirical formula for butane? (1) - A CH - ☑ B CH₂ - □ C₄H₁₀ - (b) Figure 5 shows some information about the alkenes, ethene and propene. Complete the table. The structure of propene must show all covalent bonds. (2) | name of alkene | molecular formula | structure | |----------------|-------------------------------|-----------| | ethene | | H H | | propene | C ₃ H ₆ | | Figure 5 (c) Butene reacts with steam to produce butanol. $$C_4H_8 + H_2O \rightarrow C_4H_9OH$$ (i) Calculate the maximum mass of butanol, C_4H_9OH , that can be produced when 1.4 kg of butene, C_4H_8 , reacts with excess steam. (relative atomic masses: H = 1, C = 12, O = 16 relative molecular mass of butene, $C_4H_8 = 56$) (3) mass of butanol =kg (ii) What type of reaction takes place between butene and steam? (1) - A addition - **B** dehydration - C neutralisation - D substitution | | A sample of each of three hydrocarbons, X , Y and Z , was shaken with bromine water. Bromine water is orange coloured. | | |--------|--|-------| | 1 | he results are: | | | \
Z | orange mixture becomes colourless orange mixture becomes colourless mixture remains orange Using the results, comment on the structures of the hydrocarbons X, Y and Z. | (2) | | | (Total for Question 4 = 9 ma | arks) | | 5 | Qua | litative tests are used to identify ions. | | |-----|----------|--|-----| | | . , | A student carries out a flame test on an unknown solid.
A red flame is seen.
The student concludes that the solid is lithium carbonate. | | | | ! | Explain why this conclusion is not justified. | (2) | | | | | | | | (b) - | The following tests were carried out on a substance containing two ions. | | | | | 1. A flame test on the solid substance produced a yellow colour. | | | | : | Dilute hydrochloric acid was added to a solution of the substance followed by
a few drops of barium chloride solution. A white precipitate formed. | | | | (| Give the name and formula of the substance. | (2) | | Na | me o | f substance | | | Foi | rmula | of substance | | | | 1 | The test for chloride ions was carried out on a solution.
Dilute nitric acid was added to the solution, followed by a few drops of silver
nitrate solution.
A white precipitate formed. | | | | , | Why is it necessary to add dilute nitric acid in this test? | (1) | | | X | A To neutralise the solution | | | | X | B Nitrate ions are needed for the test to work | | | | \times | C To make sure that no carbonate ions are present | | | | × | D The test only works in alkaline conditions | | | | compounds. | | |------|---|-----| | (i) | Sodium hydroxide solution is warmed with a solution of ammonium ions. Ammonia gas is given off. | | | | Describe the test to show the gas is ammonia. | (2) | | | | | | (ii) | Sodium hydroxide solution is also used to distinguish between iron(II) ions, Fe and iron(III) ions, Fe ³⁺ , in solution. | | | | You are given a solution containing iron(II) ions and another solution containing iron(III) ions. | | | | Describe what is seen when sodium hydroxide solution is added to each of these solutions. | | | | | (2) | | | | | | | | | | (iii |) Iron(III) ions, Fe ³⁺ , react with hydroxide ions in solution to form iron(III) hydroxide. | | | | Complete the ionic equation for this reaction. | (1) | | | $Fe^{3+} + 3OH^- \rightarrow \dots$ | | (4) - **6** This question is about properties of materials. - (a) Figure 6 shows some properties of steel and Kevlar[®]. | property | steel | Kevlar ® | |----------------------------|-------|-----------------| | density/g cm ⁻³ | 7.85 | 1.44 | | relative strength | 1 | 5 | | flexibility | low | high | | resistance to corrosion | low | high | Figure 6 Body armour, such as a bullet-proof vest, could be manufactured using either of these materials. | Explain two reasons why Kevlar® is pref | erred to steel as the material for | |--|------------------------------------| | body armour. | | | | | - (b) The use of nanoparticles has increased in recent years. - (i) The length of one side of a cube of silver is 2 cm as shown in Figure 7. Figure 7 Calculate the surface area to volume ratio of this cube of silver. (3) surface area to volume ratio = (ii) Suggest an explanation of why a given mass of silver is more effective as a catalyst when used as nanoparticles rather than in a powder form. (3) (Total for Question 6 = 10 marks) **7** A student investigated the rate of reaction between dilute hydrochloric acid and marble chips (calcium carbonate). Calcium chloride, carbon dioxide and water are formed. (a) Complete and balance the equation for the reaction. (2) $CaCO_3 + HCI \rightarrow \dots + \dots + \dots + \dots + \dots + \dots$ gas / cm³ (b) The student investigated the rate by using different sizes of marble chips. In their investigation, the same mass of marble chips was used in each experiment. The volume of gas given off was measured. The graph in Figure 8 shows the results. Figure 8 (i) State how the graph shows that line B gives the results for the larger marble chips. (1) (ii) A tangent has been drawn on line A. Calculate the rate of reaction at this point. (2) rate of reaction =cm³ s⁻¹ (c) During any reaction, reactants are used up and the rate of reaction decreases. Explain, in terms of particles, why the rate of reaction decreases. (2) (d) The decomposition of hydrogen peroxide is catalysed by adding a small amount of manganese(IV) oxide. Which of these graphs shows the mass of the catalyst as the reaction takes place? (1) (e) Two gases, ${\bf X}$ and ${\bf Y}$, react to give a gaseous product ${\bf Z}$. The reaction is carried out under two different sets of conditions in experiments 1 and 2 as shown in Figure 9. | condition | experiment 1 | experiment 2 | |----------------|--------------|--------------| | temperature/°C | 30 | 20 | | pressure/atm | 1 | 2 | Figure 9 | Tiguic 5 | | |---|----------| | Explain why it is not possible to predict what the rate of Experiment 2 will be compared with Experiment 1. | (3) | | | | | | | |
(Total for Question 7 = 11 ma | | | (10000101111111111111111111111111111111 | <i>-</i> | - 8 The elements chlorine, bromine and iodine are part of group 7 in the periodic table. - (a) The appearances of chlorine, bromine and iodine at room temperature are shown in Figure 10. | halogen | appearance | | | |----------|------------------|--|--| | chlorine | green gas | | | | bromine | red-brown liquid | | | | iodine | grey solid | | | Figure 10 Astatine is the element below iodine in group 7. Predict the appearance of astatine. (1) *(b) The order of reactivity of chlorine, bromine and iodine can be determined by carrying out displacement reactions. Explain how displacement reactions can be used to show the reactivity of these three elements. - (c) When iron wool is heated in bromine vapour, it reacts to form iron bromide. - (i) In an experiment, 5.60 g of iron reacted exactly with 24.0 g of bromine, Br₂. [relative atomic masses: Fe = 56.0, Br = 80.0] Determine, using this information, the balanced equation for the reaction between iron and bromine. You must show your working. (4) (ii) When iron reacts with bromine, bromide ions are formed. Explain the type of reaction bromine atoms undergo when they are converted to bromide ions. (2) (Total for Question 8 = 13 marks) (2) **9** (a) A student carried out an experiment to prove that candle wax, a hydrocarbon, produces carbon dioxide and water vapour when it burns. The equipment used is shown in Figure 11. Figure 11 The gas produced from the burning candle is drawn through the apparatus. The limewater turned milky showing that carbon dioxide had been formed. A small amount of a colourless liquid condensed in boiling tube **X**. The student claimed that this proved that burning candle wax produced water. The teacher said the apparatus had been set up incorrectly and therefore this conclusion about water was not valid. Explain how the student could modify the equipment to prove that water is produced by burning candle wax. |
 |
 |
 | |------|------|------| | | | | |
 |
 |
 | | | | | | | | | |
 |
 |
 | *(b) Polymers are addition or condensation polymers. Polymers can be formed by using the monomers shown in Figure 12. | monomer | structure | | | |------------------|---------------------------------------|--|--| | chloroethene | H C=C H | | | | ethane-1,2-diol | H H

HO—C—C—OH

H H | | | | ethanedioic acid | O O O O O O O O O O O O O O O O O O O | | | Figure 12 Explain, using appropriate monomers from Figure 12, how different polymers can be formed. |
 |
 |
 | |------|------|------| | | | | | | |
 | | |
 |
 |
 | (6) - (c) An alcohol **A**, with molecular formula C_2H_5OH is oxidised to a compound **B** with molecular formula $C_2H_4O_2$. - (i) Compound **B** is not an alcohol and is a member of another homologous series. State the name of this homologous series. (1) (ii) Draw the structure of a molecule of compound **A** and a molecule of compound **B**, showing all covalent bonds. (2) Compound A Compound **B** (Total for Question 9 = 11 marks) | 10 (a) | Each of these substances forms ions in solution. | | |---------------|---|-------| | | One mole of the following substances is dissolved in 1 dm ³ of water. | | | | Which solution contains the greatest number of ions? | (4) | | | 16 . (111) 60 | (1) | | | 4.2 4 | | | X | 3 | | | × | magnesium nitrate, Mg(NO ₃) ₂ | | | × | D potassium bromide, KBr | | | (b) | When sodium hydroxide solution is neutralised with an acid there is a temperature change. | | | | A student is given dilute hydrochloric acid and dilute ethanoic acid of the same concentration in $\mbox{mol}\mbox{dm}^{-3}$. | | | | Devise a plan to compare the temperature changes produced when sodium hydroxide solution is neutralised with each of these two acids. | (4) | | | | (- / | (c) Hydrogen reacts with chlorine to form hydrogen chloride. $$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$ The reaction is exothermic. Draw and label the reaction profile diagram for this reaction, identifying the activation energy. (3) (d) The energies of some bonds are shown in Figure 13. | bond | energy of bond
/kJ mol ⁻¹ | | | |-------|---|--|--| | Н—Н | 436 | | | | CI—CI | 243 | | | | H—CI | 432 | | | Figure 13 Hydrogen reacts with chlorine to form hydrogen chloride. $$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$ Calculate the energy change, in $kJ \, mol^{-1}$, for the reaction of 1 mol of hydrogen gas, H_2 , with 1 mol of chlorine gas, Cl_2 , to form 2 mol of hydrogen chloride gas, HCl. (4) energy change =kJ mol $$^{-1}$$ (Total for Question 10 = 12 marks) **TOTAL FOR PAPER = 100 MARKS** # The Periodic Table of the Elements | 0 | 4 He helium 2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | fully | |--------------|---------------------------|---|------------------------------------|------------------------------------|-------------------------------------|---|---| | _ | | 19
F
fluorine
9 | 35.5 CI chlorine 17 | 80
Br
bromine
35 | 127
 | [210]
At
astatine
85 | orted but not | | 9 | | 16
O
oxygen
8 | 32
S
suffer
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ve been repo | | 2 | | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | s 112-116 ha
authenticated | | 4 | | 12
C
carbon
6 | 28
Si
silicon
14 | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207 Pb | mic numbers
a | | က | | 11
B
boron
5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
TI
thallium
81 | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | | ' | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Elem | | | | | | 63.5
Cu copper 29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg
roentgenium
111 | | | | | | 59
Ni
nickel
28 | 106 Pd palladium 46 | 195
Pt
platinum
78 | [271] Ds damstadtium 110 | | | | | | 59
Co
cobalt
27 | 103
Rh
rhodium
45 | 192
 Ir
 iridium
 77 | [268] Mt meitrerium 109 | | | 1
H
hydrogen | | | 56
Fe
iron
26 | Ru
ruthenium
44 | 190
0s
osmium
76 | [277]
Hs
hassium
108 | | _ | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | | nass
ool
umber | | 52
Cr | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | [266]
Sg
seaborgium
106 | | | Key | relative atomic mass
atomic symbol
_{name}
atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | | relativ
ato
atomic | | 48
Ti
tttanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | [261]
Rf
rutherfordium
104 | | | · | | | 45
Sc
scandium
21 | 89
Y
yttrium
39 | 139
La*
lanthanum
57 | [227]
Ac*
actinium
89 | | 2 | | 9 Be beryllium 4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | [226]
Ra
radium
88 | | - | | 7
Li
lithium
3 | 23
Na
sodium
11 | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223]
Fr
francium
87 | ^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.