Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson GCE Advanced Subsidiary Level In Chemistry (8CH0) Paper 01 Core Inorganic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 8CHO_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is
essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

| Question
 Number | Answer |
| :--- | :--- | :---: |
| $\mathbf{1}$ | The only correct answer is $\mathbf{D}\left(9.03 \times 10^{24}\right)$ |
| | \boldsymbol{A} is not correct because this is the answer for 1 mol of aluminium oxide as molecules |
| | \boldsymbol{C} is not correct because this is the answer for 3 mol of aluminium oxide as molecules |
| | |

(Total for Question 1 = 1 mark)

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is $\mathbf{D} \quad\left(1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is not correct because $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{2}$ is for an s^{2+} ion	
	\boldsymbol{B} is not correct because $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 p^{4}$ is for an s^{2+} ion with electrons removed from the 3s subshell	
C is not correct because $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{4}$ is for the sulfur atom		

Question Number	Acceptable Answer	Additional Guidance	Mark
3(a)	An answer that makes reference to the following points:		(2)
	• same number of protons	(1)	
(1)			

Question Number	Acceptable Answer	Additional Guidance	Mark
3(b)	- correct subtraction to calculate relative abundance of unknown isotope - calculation of mass number of unknown isotope of gallium with suitable working	Example of calculation $100-63.25=36.75$ OR $1.00-0.6325=0.3675$ $\frac{(69 \times 63.25)+(M \times 36.75)}{100}=69.735$ OR $43.64(25)+\frac{36.75 \mathrm{M}}{100}=69.735$ $\mathrm{M}=71$ Ignore any units given with final answer. Correct answer with no working gets M2 only Allow TE from M1	(2)

Question Number	Answer	Mark
4(a)	The only correct answer is A (carbonates - increases, nitrates - increases)	(1)
	B is not correct because thermal stability of Group 2 nitrates does not decrease down the group	
C is not correct because thermal stability of Group 2 carbonates does not decrease down the group		
	D is not correct because thermal stabilities of Group 2 carbonates and nitrates do not decrease down the group	

Question Number	Acceptable Answer	Additional Guidance	Mark
4(b)	A description that makes reference to the following points: - Workable method + time / compare - Same heat applied - Same amount of each nitrate in separate test tubes	Examples of workable methods - First one to re-light a glowing splint / produce brown fumes. Accurate timing not essential. - Use of light sensor / meter to measure colour of gas - Use of gas syringe and measure rate of production of gas / time to produce specific volume - Bubble gas into indicator solution - time to change colour - Collection of gases over water and volume measured Reward any workable alternative. e.g. use the same Bunsen Award if implied by diagram Award 'equal masses'.	(4)

	- safety precaution: fume cupboard/hood	(1)	Example diagram: Ignore well ventilated room / face mask / goggles / gloves / lab coat This is the only acceptable safety precaution.	

Question Number	Answer	Mark
4(c)	The only correct answer is B (hydroxides - increases, sulfates - decreases) A is not correct because sulfate solubility does not increase down the group C is not correct because hydroxide solubility does not decrease down the group and sulfate solubility does not increase down the group D is not correct because hydroxide solubility does not decrease down the group	(1)

Question Number	Answer	Mark
$\mathbf{5 (a)}$	The only correct answer is C (36.7\%)	
	\boldsymbol{A} is not correct because 21.3% is calculated using the atomic number of iron	
B is not correct because 35.1% is calculated using all atomic numbers		
\boldsymbol{D} is not correct because 53.8% is calculated using the atomic numbers of sulfur and oxygen		

Question Number	Acceptable Answer	Additional Guidance	Mark
5(b)	A description that makes reference to the following points: - (add hydrochloric acid / nitric acid then) add barium chloride / barium nitrate (solution) - white precipitate / white solid	Ignore omission of acid Do not award just Barium ions / Ba^{2+} M2 is dependent on M1, with the exception of just Ba^{2+} given as reagent	(2)

Question Number	Answer	Mark
5(c)	The only correct answer is A (392.0)	
	B is not correct because 312.0 is calculated from only 6 multiples of the H_{2} of the 6-water	
C is not correct because 302.0 is calculated by not multiplying the water by 6		
\boldsymbol{D} is not correct because 284.0 is calculated by ignoring the 6-water completely	(1)	

Question Number	Acceptable Answer	Additional Guidance	Mark
6(a)(i)	An answer that makes reference to the following points: - any mention of platinum/nichrome wire - dip the wire into (clean/fresh concentrated) hydrochloric acid (1) - dip the (wet) wire into the solid and place in a (non-luminous/roaring/blue Bunsen) flame	Allow NiCr for nichrome Allow silica/magnesia for platinum or nichrome Allow loop / rod for wire Ignore inoculating / flame-test (wire) Allow any mention of $\mathrm{HCl}(\mathrm{aq})$ e.g. cleaning or mixing solid and acid or making a paste Allow HCl for $\mathrm{HCl}(\mathrm{aq})$ Ignore dilute Allow on / over / under / near / show / above for 'in'	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
6(a)(ii)	An explanation that makes reference to the following points: - mention of energy or heat or heating (from the flame) (1) - electrons promoted to higher energy levels - electrons drop down / return (to lower energy levels / ground state) - light (in the visible region) is emitted / released / given out (1)	Do not award M1 for "burning" Allow just ‘electrons excited' for M2 Allow electromagnetic / e.m. radiation / photons instead of light	(4)
Question Number	Acceptable Answer	Additional Guidance	Mark
6(a)(iii)	An answer that makes reference to the following point: - no emission of light /energy in the visible region (of the spectrum)	Do not award any mention of (bright) white light emission Allow electromagnetic / e.m. radiation / photons / colour instead of light / energy Allow the light emitted is in the UV or IR Allow any references to frequency or wavelength being too high or too low	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
6(a)(iv)	An answer that makes reference to the following point:		(1)
	• (There are) other ions that do not produce a flame colour	Allow a specific ion that does not have a flame colour e.g. 'beryllium' / Be ${ }^{2+}$ Allow other "elements" do not produce a flame colour Do not award if any references to "burning"	

Question Number	Acceptable Answer	Additional Guidance	Mark
6(b)(i)	• AgNO_{3}	Ignore 'silver nitrate'	(1)
		Ignore state symbols for AgNO_{3}	

Question Number	Answer	Mark
$\mathbf{6 (b) (i i) ~}$	The only correct answer is B (insoluble in dilute ammonia solution, soluble in concentrated ammonia solution) C is not correct because silver bromide is soluble in concentrated ammonia solution solution D is not correct because silver bromide is insoluble in dilute ammonia solution	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
7(a)	An answer that makes reference to the following points: - balanced equation with correct species - correct states all correct	Example of equation: $\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ or $\mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ Do not award M_{2} for incorrect formulae e.g. MgCl (for MgCl_{2}), or $\mathrm{H}\left(\right.$ for H_{2}) Allow M2 for unbalanced equation if all species correct	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
7(b)(i)	An answer that makes reference to the following point:	Example of calculation:	(1)
	• calculation of uncertainty	$\left(\pm \frac{0.5 \times 100}{10.0}=(\pm) 5 / 5.0 / 5.00(\%)\right.$	

Question Number	Acceptable Answer	Additional Guidance	Mark
7(b)(ii)	An answer that makes reference to the following points: - calculation of moles of Mg - calculation of moles of HCl - evidence to support Mg in excess	Example of calculation: 0.12 $24.3=4.9383 \times 10^{-3} / 0.0049383$ (mol) Allow A_{r} for $\mathrm{Mg}=24$ $\frac{10 \times 0.20}{1000}=2.0 \times 10^{-3} / 0.002(\mathrm{~mol})$ $4.9383 \times 10^{-3} \mathrm{~mol}$ of Mg requires $9.8765 \times 10^{-3} \mathrm{~mol}$ of HCl (and $0.002<9.8 \times 10^{-3}$) so Mg in excess or 0.002 mol HCl requires 0.001 mol Mg (and $0.0049>0.001$) so Mg in excess Ignore SF Do not award M3 for $0.0049>2 \times 0.002$ OR $0.0049>0.004$ to show that Mg is in excess Do not award M 3 if HCl stated to be in excess	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
7(b)(iii)		Example of calculation	(1)
	calculation of moles of gas	$0.002 \div 2=0.001$ or 1×10^{-3}	

Question Number	Acceptable Answer	Additional Guidance	Mark
7(b)(iv)	- Rearrangement of ideal gas equation - conversion of ${ }^{\circ} \mathrm{C}$ to K (1) - calculation of volume in m^{3} - calculation of volume in cm^{3}	Example of calculation: $\mathrm{pV}=\mathrm{nRT} \text { rearrange } \mathrm{V}=\underline{\mathrm{nRT}}$ p Allow M1 if equation rearrangement not explicitly shown but used correctly in M3 $(273+23)=296$ Allow M2 if $(273+23)$ used in equation $\begin{aligned} V & =\frac{1.0 \times 10^{-3} \times 8.31 \times(273+23)}{98000} \\ & =2.51 \times 10^{-5}\left(\mathrm{~m}^{3}\right) \\ & =25 \text { allow } 25.1\left(\mathrm{~cm}^{3}\right) \end{aligned}$ Allow TE from (b)(iii) and TE at each stage Allow $\mathbf{2}$ or $\mathbf{3} \mathrm{SF}$ for final answer ECF values from (b)(iii) For $0.002 \mathrm{~mol} \mathrm{H}_{2}, \mathrm{~V}=50.2 \mathrm{~cm}^{3}$ For $0.00494 \mathrm{~mol} \mathrm{H}_{2}, \mathrm{~V}=124 \mathrm{~cm}^{3}$ For $0.00894 \mathrm{~mol} \mathrm{H}_{2}, \mathrm{~V}=224 \mathrm{~cm}^{3}$ For $0.004 \mathrm{~mol} \mathrm{H}_{2}, \mathrm{~V}=100 \mathrm{~cm}^{3}$	

Question Number	Acceptable Answer	Additional Guidance	Mark
7(c)(i)	An answer that makes reference to the following points:	(1)	Ignore 'generic' gas leakages from apparatus Do not award gas may dissolve (in water or acid)
	- gas lost before the bung replaced	Ignore 'generic' references to impurity - the magnesium was coated with oxide (so water was formed instead of hydrogen)	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
7(c)(ii)	An answer that makes reference to the following points:		(2)
	arrange equipment so that the Mg ribbon drops into the acid after the delivery tube was replaced (1) clean the magnesium ribbon	Ignore replace the bung more quickly Allow any workable method	

Question Number	Acceptable Answer	Additional Guidance	Mark
8(a)	An explanation that makes reference to the following points: - comparison of ionic charges - comparison of ionic radii - comparison of energy required	Examples of explanations MgO has doubly charged ions and KBr has singly charged ions Allow reference to just one ion in each compound Mg^{2+} smaller than K^{+} and/or O^{2-} smaller than Br^{-} Ignore references to atomic radii More energy needed to overcome the electrostatic attractions/bonds (between ions) in MgO (than in KBr) Ignore references to 'electronegativity' / (ion) polarisation Award (0) overall if any mention of any of the following: London Forces Molecules / intermolecular forces Hydrogen bonding Covalent bonding	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
$\mathbf{8 (b)}$	An explanation that makes reference to the following points: (solid potassium bromide does not conduct because) the ions are in fixed positions / ions are not free to move (1) - it does conduct in solution because the ions are free to move (and carry charge) (1)	Do not award any marks if reference to movement of electrons or free electrons when conduction occurs	Do not award any marks if 'molecules'/ London forces mentioned

Indicative content：

－IP1 graphene has a single layer／single sheet（of hexagons／rings）
－IP2 graphene has delocalised electrons／electrons which are mobile
－IP3 graphite has layers／sheets／planes
and
each carbon bonded to three others
－IP4 graphite has delocalised electrons／electrons which are mobile（between the layers）
－IP5 diamond has each carbon bonded to four other carbons／diamond has a tetrahedral arrangement（around each C atom）／tetrahedral structure
－IP6 diamond＇s C atoms have all their outer／valence／ fourth electrons involved in bonding
OR
diamond has no delocalised electrons／all electrons are localised

Allow annotated diagrams for all marking points
graphite

$$
\begin{aligned}
& \text { रैंदु? } \\
& \text { そそう }
\end{aligned}
$$

 diamond
graphene

Allow＇free＇for delocalised or mobile

Question Number	Acceptable Answer	Additional Guidance	Mark		
8(d)	An answer that makes reference to the following points:				
- iron atoms have greater mass than carbon atoms (1)					(2)
:---					

Question Number	Acceptable Answer	Additional Guidance	Mark
8(e)	An answer that makes reference to the following points: - Lower value relates to (weak) London / van der Waals' forces (between the layers) - Higher value refers to (strong) covalent (C-C) bonds (within each layer)	Allow 'pi-bonds (between layers)' Allow "(weak) intermolecular forces (between layers)" Allow (C-C) ‘sigma bonds’	(2)

(Total for Question 8 = 15 marks)

Question Number	Answer	Mark
$\mathbf{9 (a) (i)}$	The only correct answer is C (Disproportionation)	(1)
	\boldsymbol{A} is not correct because oxidation and reduction are occurring	
B is not correct because oxidation and reduction are occurring		
D is not correct because two reactants are involved		

Question Number	Acceptable Answer	Additional Guidance	Mark
9(a)(ii)	An answer that makes reference to the following points: - (trigonal) pyramidal - (predicted bond angle) 107° - three groups / three pairs of bonding electrons and one lone pair OR Ione pair - bond pair repulsion > bond pair - bond pair repulsion - (electron pairs / groups repel to positions of) minimum repulsion / maximum separation	For M1, this shape must be named Allow answers in the range 106.5° to 107.5° (allow actual value 110°) Allow M2 on an annotated diagram Allow 'regions' for 'groups' or 'pairs' Allow statements such as "Ione pair repulsion greater than bond pair repulsion"	(4)

Question Number	Acceptable Answer	Additional Guidance	Mark
9(b)(i)	- $\mathbf{4} \mathrm{KClO}_{3} \rightarrow \mathbf{1} \mathrm{KCl}+\mathbf{3} \mathrm{KClO}_{4}$	Allow just KCl with no number in front Allow multiples	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
9(b)(ii)	An answer that makes reference to the following points: - use of water only as solvent add the mixture of solids / products to any one of the following: water only or ethanol only or a water plus ethanol mixture or water followed by ethanol or ethanol followed by water (1) filter off the undissolved potassium chlorate(VII) KCIO (1)	Use of separating funnel or electrolysis scores (0) overall	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
9(c)	An answer that makes reference to the following points: - conversion of water volume to cm^{3} or g - calculation of the mass of chlorine in $2.5 \times 10^{9} \mathrm{~g} / \mathrm{cm}^{3}$ of water - conversion of the mass of chlorine to moles of chlorine gas $\left(\mathrm{Cl}_{2}\right)$ by dividing by 71	Example of calculation: $\begin{align*} & 2500 \mathrm{~m}^{3}=2500 \times 10^{6} \mathrm{~cm}^{3}=2.5 \times 10^{9} \mathrm{~cm}^{3} \tag{1}\\ & \text { or }=2500 \times 10^{6} \mathrm{~g}=2.5 \times 10^{9} \mathrm{~g} \\ & \frac{2 \times 2.5 \times 10^{9}}{1 \times 10^{6}}=5.0 \times 10^{3} \mathrm{~g} \\ & \frac{5.0 \times 10^{3}}{(35.5 \times 2)}=70(.4)(\mathrm{mol}) \end{align*}$ Allow alternative calculation methods Ignore SF for final answer Answer of 35.2 / 140.8 mol Cl 2 scores (2) marks	(3)

Question Number	Acceptable Answer	Additional Guidance	Mark
9(d)	An explanation that makes reference to the following points: Lower than 1 ppm - HClO will be low(er) - ineffective (as a disinfectant) Higher than 3 ppm - HCl will be high(er) - any relevant effect of increased HCl	Ignore reference to amount of Cl_{2} being too low M2 dependent on correct M1 M4 dependent on correct M3 Award effects including corrosive, alters or lowers pH NB: Do not award high(er) pH Award increases acidity / strongly acidic / toxicity Award any reasonable negative effect on swimmers e.g. irritation / irritant Ignore just ‘harmful' / just 'dangerous' Ignore reference to amount of Cl_{2} being too high and its effects	(4)

Question Number	Acceptable Answer	Additional Guidance	Mark
9(e)(i)	A description that makes reference to the following points: - diagram showing both Na^{+}ion and ClO^{-}ion surrounded by water molecules/solvated - correct orientation of the water molecules around both ions with a relevant dipole shown on at least one water molecule for each ion, (i.e. δ - on O for a water molecule next to $\mathrm{Na}+$ and $\mathrm{a} \delta+$ on at least one H atom on a water molecule next to a ClO^{-}) (1)	Allow any number of water molecules (>1) for both ions For M1 to be awarded there must be more than one $\mathrm{H}_{2} \mathrm{O}$ molecule around each ion M2 can be awarded even if only one $\mathrm{H}_{2} \mathrm{O}$ molecule is shown next to each ion Allow one mark for one ion surrounded by correctly orientated water molecules. Written description only, covering the same two marking points scores one mark max Mention of hydrogen bonding or water drawn as " HO_{2} " or NaClO shown as covalent scores (0) overall	(2)

Question Number	Acceptable Answer	Additional Guidance	Mark
9(e)(ii)	An answer that makes reference to the following points:		
- ethanol forms hydrogen bonds (with water) (1)			

Question Number	Acceptable Answer	Additional Guidance	Mark
9(f)	- calculation of $\mathrm{mol}^{\text {of }} \mathrm{ClO}^{-}$in $1000 \mathrm{dm}^{3}$ of water - calculation of mol of $\mathrm{Ca}(\mathrm{ClO})_{2}$ - calculation of mass of $\mathrm{Ca}(\mathrm{ClO})_{2}$	Example of calculation: $\begin{align*} & 5.6 \times 10^{-6} \times 10^{3}=5.6 \times 10^{-3}(\mathrm{~mol}) \tag{1}\\ & \frac{5.6 \times 10^{-3}}{2}(\mathrm{~mol}) \\ & =2.8 \times 10^{-3}(\mathrm{~mol}) \end{align*}$ $2.8 \times 10^{-3} \times 143.1=0.40068(\mathrm{~g})=0.4(\mathrm{~g})$ Allow use of 143 instead of 143.1 in M3 Ignore SF Answer of 0.8(01) (g) scores (2) marks	(3)

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

