| Please check the examination of                                     | letails below | <i>ı</i> before entering | your candidate information |  |  |
|---------------------------------------------------------------------|---------------|--------------------------|----------------------------|--|--|
| Candidate surname                                                   |               | Ot                       | her names                  |  |  |
| Pearson Edexcel<br>Level 3 GCE                                      | Centro        | e Number                 | Candidate Number           |  |  |
| Tuesday 11 June 2019                                                |               |                          |                            |  |  |
| Afternoon (Time: 1 hour 45 minutes) Paper Reference <b>9CH0/02</b>  |               |                          |                            |  |  |
| Chemistry Advanced Paper 2: Advanced Organic and Physical Chemistry |               |                          |                            |  |  |
| Candidates must have: Scien<br>Data<br>Rule                         | Booklet       | ulator                   | Total Marks                |  |  |

### Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.

### Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.
- For the question marked with an asterisk (\*), marks will be awarded for your ability to structure your answer logically showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

### **Advice**

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶







## **Answer ALL questions.**

Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⋈.

| 1 | This qu     | uest | tion is about some reactions of alcohols.                                        |          |
|---|-------------|------|----------------------------------------------------------------------------------|----------|
|   | (a) (i)     | Wł   | nich alcohol cannot be oxidised by acidified potassium dichromate(VI)?           | (4)      |
|   | ×           | Α    | hexan-2-ol                                                                       | (1)      |
|   | ×           | В    | 2-methylpentan-2-ol                                                              |          |
|   | X           | C    | hexan-3-ol                                                                       |          |
|   | $\times$    | D    | 2-methylpentan-3-ol                                                              |          |
|   |             |      |                                                                                  |          |
|   | (ii)        | Wł   | nich alcohol reacts with iodine in the presence of alkali to form a yellow solid | ?<br>(1) |
|   | ×           | A    | hexan-2-ol                                                                       | ( " )    |
|   | ×           | В    | 2-methylpentan-2-ol                                                              |          |
|   | ×           | C    | hexan-3-ol                                                                       |          |
|   | ×           | D    | 2-methylpentan-3-ol                                                              |          |
|   |             |      |                                                                                  |          |
|   | (b) Wł      | nich | reagent is used with iodine to prepare iodoalkanes from alcohols?                | (1)      |
|   |             | red  | d phosphorus                                                                     | ( - )    |
|   | ⊠ B         | со   | ncentrated phosphoric acid                                                       |          |
|   | $\square$ C | CI I | lfur                                                                             |          |

(Total for Question 1 = 3 marks)

**D** concentrated sulfuric acid

# **BLANK PAGE**



- 2 This question is about alkanes and their reactions.
  - (a) What is the IUPAC name for this alkane?



(1)

- A 4-ethyloctane
- ☑ B 5-ethyloctane

- (b) What is the name of the process that could be used to produce propane,  $C_3H_8$ , from decane,  $C_{10}H_{22}$ ?

(1)

- A substitution
- B reforming
- C fractional distillation
- **D** cracking
- (c) A student researched the reaction of propane with bromine and found that the reaction could be used to make 1-bromopropane.

$$C_3H_8(g) + Br_2(I) \rightarrow C_3H_7Br(I) + HBr(g)$$

(i) The first step of the reaction involves

(1)

- A heterolytic bond fission to form free radicals
- **B** heterolytic bond fission to form ions
- C homolytic bond fission to form free radicals
- □ homolytic bond fission to form ions

(ii) Calculate the atom economy by mass for the formation of 1-bromopropane in the reaction in (c).

(2)

(iii) A source from the internet gave the percentage yield for this reaction as 31.0%. The best explanation for the low percentage yield of 1-bromopropane in this reaction is

(1)

- ☑ A bromine is very unreactive
- ☑ B a gaseous reactant always gives a low yield
- C the reaction is very slow
- D the reaction produces a mixture of organic products
- (iv) Calculate the volume of propane, in dm<sup>3</sup>, measured at room temperature and pressure, that is needed to produce 14.7 g of 1-bromopropane, assuming a percentage yield of 31.0%.

  Give your answer to an appropriate number of significant figures.

[Molar gas volume at r.t.p. =  $24.0 \,\mathrm{dm^3} \,\mathrm{mol^{-1}}$ ]

(3)

(Total for Question 2 = 9 marks)



| This question is about compounds of Group 5 elements.  (a) Phosphorus forms two chlorides with the formulae PCl <sub>3</sub> and PCl <sub>5</sub> .  (i) Explain the shape of the PCl <sub>3</sub> molecule. The bond angle is not required. |                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (ii) Draw a diagram to show the three-dimensional shape of the PCl₅ molecule in                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| the gas phase.  Include bond angles and the name of the shape.                                                                                                                                                                               | (3)                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| (iii) Explain why phosphorus forms PCl₅ but nitrogen does not form NCl₅.                                                                                                                                                                     | (2)                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                              | (a) Phosphorus forms two chlorides with the formulae PCl <sub>3</sub> and PCl <sub>5</sub> .  (i) Explain the shape of the PCl <sub>3</sub> molecule. The bond angle is not required.  (ii) Draw a diagram to show the three-dimensional shape of the PCl <sub>5</sub> molecule in the gas phase.  Include bond angles and the name of the shape. |  |  |  |

| Fv         | plain this difference in boiling temperatures, by referring to all the     |                |
|------------|----------------------------------------------------------------------------|----------------|
|            | ermolecular forces present.                                                |                |
|            |                                                                            | (5)            |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
|            |                                                                            |                |
| c) WI      | nich of these compounds produces hydrogen chloride when it reacts with PCI | <sub>5</sub> ? |
| <b>⊠</b> A | propanal                                                                   | ( - )          |
| В          | propan-1-ol                                                                |                |
|            |                                                                            |                |
| <b>C</b>   | propanone                                                                  |                |



**4** Methyl cinnamate,  $C_{10}H_{10}O_2$ , is a white crystalline solid used in the perfume industry.

methyl cinnamate

(a) Calculate the mass of carbon in 2.34g of methyl cinnamate.

(2)

(b) A sample of methyl cinnamate was analysed by high resolution proton NMR spectroscopy.

A simplified spectrum is shown.



(i) Name the compound responsible for the peak at a chemical shift of 0 ppm, stating its purpose.

(2)

(ii) Identify the proton environment that causes the peak at a chemical shift of 3.8 ppm by circling it on the diagram shown. Fully justify your answer.

(3)



- (c) Methyl cinnamate undergoes an addition reaction in the dark with bromine.
  - (i) Draw the mechanism for the reaction between methyl cinnamate and bromine, Br₂.
     Include curly arrows, and relevant lone pairs and dipoles.

(4)



(ii) Deduce the number of optical isomers of the addition product that can exist.

(1)

- **■ B** 3
- X C 4
- **■ D** 8
- (iii) When plane-polarised light is passed through an optical isomer, the plane of polarisation is

(1)

- A diffracted
- B reflected
- D rotated

(Total for Question 4 = 13 marks)

# **BLANK PAGE**



5 This question is about the arenes, ethylbenzene, xylene, and phenol, which can be identified in wine samples using gas chromatography.



- (a) Ethylbenzene can be formed by the reaction of a chloroalkane with benzene, catalysed by aluminium chloride, AlCl<sub>3</sub>.
  - (i) Draw the **displayed** formula of the chloroalkane required for this reaction.

(1)

(ii) Draw the mechanism for this reaction. Include equations showing the role of the catalyst and how it is regenerated.

(5)

| (iii) Explain whether phenol is likely to be less or more reactive than benzene with the chloroalkane from (a)(i). |     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|                                                                                                                    | (3) |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |
|                                                                                                                    |     |  |  |  |

(b) A student carried out an experiment to determine the molar mass of xylene.

The student's sample of xylene vapour had a mass of 0.271 g.

At a temperature of 165 °C and a pressure of 118 kPa, this sample had a volume of 70.5 cm<sup>3</sup>.

Use the Ideal Gas Equation to calculate the molar mass, in  $g \text{ mol}^{-1}$ , of this sample.

Give your answer to an appropriate number of significant figures.

You **must** show your working.

(4)



|     | (Total for Que                                                                                                 | estion 5 = 15 maı | rks) |
|-----|----------------------------------------------------------------------------------------------------------------|-------------------|------|
|     |                                                                                                                |                   |      |
|     |                                                                                                                |                   |      |
|     |                                                                                                                |                   |      |
|     |                                                                                                                |                   |      |
|     |                                                                                                                |                   |      |
|     |                                                                                                                |                   |      |
|     |                                                                                                                |                   |      |
|     | column, under the same conditions.                                                                             | ies in the same   | (2)  |
|     | Explain why different compounds will have different retention tin                                              | nes in the same   |      |
| (c) | The time taken for a compound to pass through the column in ga<br>chromatography is called the retention time. | as                |      |
|     |                                                                                                                |                   |      |

**6** The compound flavan-3-ol is found in tea, fruit and wine.

(a) Clearly label all the chiral carbon atoms in flavan-3-ol.

(1)

(b) Give the molecular formula for flavan-3-ol.

(1)

\*(c) A sample of flavan-3-ol extracted from wine contained some ethanol. The sample was left in a flask, open to the air for several days. The contents were then analysed to identify any new compounds formed. Several new compounds were found to be present, including some with a distinctive fruity smell.

Identify **four** new organic compounds that could form under these conditions by considering the chemistry of alcohols. Justify your answers. Include the structure of two compounds formed from flavan-3-ol, one of which has a fruity smell.

(6)

| (Total for Question 6 = 8 m | arks) |
|-----------------------------|-------|



7 Nitrogen monoxide and chlorine react together to form nitrosyl chloride.

$$2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$$

(a) Draw a dot-and-cross diagram for nitrosyl chloride, showing only the outer shell electrons.



(2)

(b) The rate equation for the formation of nitrosyl chloride is  $Rate = k[NO]^{2}[Cl_{2}]$ 

(i) Complete the table by adding the missing values.

| Experiment | [NO] / mol dm <sup>-3</sup> | [Cl <sub>2</sub> ] / mol dm <sup>-3</sup> | Rate / mol dm <sup>-3</sup> s <sup>-1</sup> |
|------------|-----------------------------|-------------------------------------------|---------------------------------------------|
| 1          | 0.122                       | 0.241                                     | $1.09 \times 10^{-2}$                       |
| 2          |                             | 0.482                                     | 8.72 × 10 <sup>-2</sup>                     |
| 3          | 0.366                       |                                           | 4.91 × 10 <sup>-2</sup>                     |

(2)

| (ii) | Calculate the rate constant, $k$ , using data from Experiment 1. |
|------|------------------------------------------------------------------|
|      | Include units with your answer.                                  |

(3)

(iii) Explain how using a catalyst increases the rate constant, k.

(2)

N TON OOD



| (iv) The heterogeneous catalyst palladium was suggested for use in this reaction. Explain how impurities in the gaseous reactants could make the catalyst less effective. |                                   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| less effective.                                                                                                                                                           | (3)                               |  |  |
|                                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                                           | (Total for Question 7 = 12 marks) |  |  |

**8** Gentian violet is a purple crystalline solid used as an antifungal treatment.

It can be synthesised from dimethylphenylamine, C<sub>6</sub>H<sub>5</sub>N(CH<sub>3</sub>)<sub>2</sub>.

(a) The dimethylphenylamine used in the synthesis can be made by the stepwise reaction of phenylamine with chloromethane.

Step 1 
$$2C_6H_5NH_2 + CH_3Cl \rightarrow C_6H_5NH(CH_3) + C_6H_5NH_3^+Cl^-$$

Step **2** 
$$2C_6H_5NH(CH_3) + CH_3Cl \rightarrow C_6H_5N(CH_3)_2 + C_6H_5NH_2^+(CH_3)Cl^-$$

The reaction mechanism for Step 1 between phenylamine and chloromethane is the same as that in the reaction between ammonia and chloromethane.

(i) What is the reaction type and mechanism in Step 1?

(1)

- A electrophilic addition
- B electrophilic substitution
- □ C nucleophilic addition
- **D** nucleophilic substitution
- (ii) Draw the mechanism for the reaction in Step 1. Include curly arrows, and relevant lone pairs and dipoles.

(4)

(iii) Describe, in outline, how a sample of a solid, such as gentian violet, is purified by recrystallisation.

Specific details of the solvent used are not required.

(4)

(b) The rate constant for the reaction between a solution of gentian violet and aqueous sodium hydroxide was determined at different temperatures.

| Temperature ( <i>T</i> )<br>/ K | 1 / Temperature (1/ <i>T</i> )<br>/ K <sup>-1</sup> | Rate constant, $k$ / dm <sup>3</sup> mol <sup>-1</sup> s <sup>-1</sup> | In <i>k</i> |
|---------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|-------------|
| 283.5                           | $3.53 \times 10^{-3}$                               | $2.71 \times 10^{-3}$                                                  | -5.91       |
| 287.5                           | 3.48 × 10 <sup>-3</sup>                             | 3.55 × 10 <sup>-3</sup>                                                |             |
| 291.5                           |                                                     | 4.75 × 10 <sup>-3</sup>                                                | -5.35       |
| 295.0                           | 3.39 × 10 <sup>-3</sup>                             | $6.10 \times 10^{-3}$                                                  | -5.10       |
| 298.5                           | 3.35 × 10 <sup>-3</sup>                             | 7.60 × 10 <sup>-3</sup>                                                | -4.88       |

(i) Complete the data in the table.

(1)

(ii) Plot a graph and use it to determine the activation energy for the reaction in kJ mol<sup>-1</sup>. You should include the value and units of the gradient of the line.

The Arrhenius equation can be shown as

$$\ln k = -\frac{E_{\rm a}}{R} \times \frac{1}{T} + \text{constant}$$

(6)



| Gradient |      |      |  |
|----------|------|------|--|
|          |      |      |  |
|          | <br> | <br> |  |

Activation energy

(Total for Question 8 = 16 marks)

**TOTAL FOR PAPER = 90 MARKS** 



# The Periodic Table of Elements

| 0 (8) | (18) | 4. <b>I</b> | helium   | 7             |
|-------|------|-------------|----------|---------------|
| 7     |      |             |          | (17)          |
| 9     |      |             |          | (16)          |
| 2     |      |             |          | (15)          |
| 4     |      |             |          | (14)          |
| m     |      |             |          | (13)          |
|       | 1.0  |             | hydrogen | Key [1]       |
| 2     |      |             |          | (2)           |
| _     |      |             |          | $\mathcal{E}$ |

| nitrogen         oxygen         fluorine           7         8         9           31.0         32.1         35.5           P         S         CI           phosphorus         sulfur         chlorine           15         16         17 | oxygen fluorine  8 9  32.1 35.5  Cl sulfur chlorine 16 17  79.0 79.9  Se Br selenium bromine 34 35 | oxygen fluorine 8  32.1 35.5  S CL sultur chlorine 16  79.0 79.9  Se Br setenium bromine k 34 35  Te I tellurium iodine 52  58  Tellurium iodine 552 | oxygen 8 8 32.1 5 Se sulfur 16 79.0 Se letenium 34 127.6 Te leturium 52 Po lolonium 84 84 84                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 28.1 Si silicon 14                                                                                                                                                                                                                         | Silticon 14 72.6 Ge germanium 32                                                                   | Sition 28.1 Sition 28.1 Sition 14                                                                                                                    | Siticon 28.17 Siticon 14 72.6 Ge germania 32 32 118.7 Sn tin 50 207.2 Pb tead 82                                                |
| (12) atur                                                                                                                                                                                                                                  | (12)<br>65.4<br>Zn<br>zinc<br>30                                                                   | (12)<br>65.4<br>Zn<br>Zinc<br>30<br>112.4<br>Cd<br>cadmium<br>48                                                                                     | (12)<br>65.4<br>Zn<br>Zinc<br>30<br>112.4<br>Cd<br>cadmium<br>48<br>mercury<br>80                                               |
| (8) (9) (10) (11)                                                                                                                                                                                                                          | (9) (10) 58.9 58.7 Co Ni cobalt nickel c27 28                                                      | (9) (10) 58.9 58.7 Co Ni cobalt 27 27 102.9 106.4 Rh Pd rhodium palladium 45                                                                         | (9) (10) 58.9 58.7 Co Ni cobalt nickel 27 28 102.9 106.4 Rh Pd rhodium palladium 45 46 192.2 195.1 Ir Pt iridium platinum 77 78 |
| (6) (8) (2)                                                                                                                                                                                                                                | (8)<br>55.8<br><b>Fe</b><br>iron<br>26                                                             | (8) 55.8 Fe iron 26 101.1 Ru ruthenium 44                                                                                                            | (8) 55.8 Fe iron 26 101.1 Ru ruthenium 44 190.2 Os                                                                              |
| (9)                                                                                                                                                                                                                                        | (6)<br>52.0<br><b>Cr</b><br>chromium ma<br>24                                                      | -                                                                                                                                                    | -                                                                                                                               |
|                                                                                                                                                                                                                                            | - va                                                                                               | 50.9<br>V<br>vanadium<br>23<br>92.9<br>Nb<br>niobium<br>41                                                                                           | 50.9  V vanadium 23 92.9 Nb niobium 41 180.9 Ta tantalum 73                                                                     |
| E                                                                                                                                                                                                                                          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                              | Z                                                                                                                                                    |                                                                                                                                 |
|                                                                                                                                                                                                                                            | Sc<br>scandium<br>21                                                                               |                                                                                                                                                      |                                                                                                                                 |
|                                                                                                                                                                                                                                            | 40.1 <b>Ca</b> calcium 20                                                                          | 40.1 Ca calcium 20 87.6 Sr strontium 38                                                                                                              | 40.1 Ca calcium 20 87.6 Sr strontium 38 137.3 Ba barium 56                                                                      |
| ĺ                                                                                                                                                                                                                                          | 39.1 <b>K</b> potassium 19                                                                         | 39.1<br>K<br>potassium<br>19<br>85.5<br>Rb<br>rubidium<br>37                                                                                         | 39.1 K potassium 19 85.5 Rb rubidium 37 132.9 Cs Cs 55                                                                          |

39.9

Ar
argon
18
83.8
Kr
Kr
Krypton
36
131.3
Xe
xenon
54
[222]
Rn
radon
86

20.2 Ne neon 10

| * Lanthanide series<br>* Actinide series |  |
|------------------------------------------|--|

| Ce         Pr         Nd         Pm         Sm         Eu           cerium         prasecdymium lecodymium promethium         samarium         europium         gad           58         59         60         61         62         63           232         [231]         238         [237]         [242]         [243]         [7           Th         Pa         U         Np         Pu         Am         C           thorium         protactinium         nranium         neptunium         plutonium         americium         c           90         91         92         93         94         95 | Gd         Tb           gadolinium         terbium           64         65           [247]         [245]           Cm         Bk           curium         berketium           96         97 | dysprosium 66 66 [251] Cf catifornium 98 | Ho<br>holmium<br>67<br>[254]<br>Es<br>einsteinium<br>99 | Er<br>erbium<br>68<br>[253]<br>Fm<br>fermium<br>100 | Tm<br>thulium<br>69<br>[256]<br>Md<br>mendelevium<br>101 | Yb ytterbium 70 [254] No nobelium 102 | Lu lutetium 71 [257] Lr lawrencium 103 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------|----------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------|----------------------------------------|