Mechanics M2 Mark scheme

| Question | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 1(a) | Resolving parallel to the plane | Condone trig confusion | M1 |
|  | $D=900 g \sin \theta+800$ |  | A1 |
|  | $\frac{900}{25} g+800(=1152.8)(\mathrm{N})$ |  |  |
|  | Work done : <br> Their $D \times$ distance $=1152.8 \times 14 \times 10$ | Independent. <br> For use of $14 \times 10 \times$ their $D$ | M1 |
|  | $=161392=161 \mathrm{~kJ}$ (160) | Accept 161000 (J), 160000 <br> (J). Ignore incorrect units. | A1 |
|  |  |  | (4) |
|  | Alternative using energy |  |  |
|  | Work done $=900 g d \sin \theta+800 d$ | Allow with incorrect $d$ | M1A1 |
|  | Use of $d=14 \times 10$ | Independent - allow in an incorrect expression | M1 |
|  | $=161392=161 \mathrm{~kJ}$ (160) |  | A1 |
|  |  |  | (4) |
| 1(b) | Equation of motion | All terms required. <br> Condone trig confusion and sign errors. <br> Allow with $900 a$ | M1 |
|  | $D-900 g \sin \theta-800=900 \times 0.7$ | Correct unsimplified with $a=0.7$ used <br> Accept with their 1152.8 arising from a 2 term expression in (a) | A1 |
|  | $(D-1152.8=900 \times 0.7)$ |  |  |
|  | $D=1782.8$ (N) |  |  |
|  | Use of $P=F v \quad P=14 \times \frac{\text { their } D}{1000}$ | Independent <br> Treat missing 1000 as misread, so allow for $14 \times$ their $D$ Allow for $\frac{1000 P}{14}$ (or $\frac{P}{14}$ ) in their equation of motion | M1 |
|  | $P=25.0$ (25) | cao | A1 |
|  |  |  | (4) |
| (8 marks) |  |  |  |


| 2(a) |  | 1.2 kg |  |
| :---: | :---: | :---: | :---: |
|  | CLM: $0.7 \times 6=0.7 \times v+1.2 w$ | Requires all terms \& dimensionally correct | M1 |
|  | $(42=7 v+12 w)$ | Correct unsimplified | A1 |
|  | Impact: | Used the right way round Condone sign errors | M1 |
|  | $w-v=6 e$ |  | A1 |
|  | Equation in $e$ and $v$ only: $42-72 e=19 v$ | Dependent on the two previous M marks | DM1 |
|  | Use direction to form an inequality: | Independent. <br> Applied correctly for their $v$ | M1 |
|  | $42-72 e>0 \quad \Rightarrow \quad e<\frac{7}{12}$ | *Given answer* | A1 |
|  |  |  | (7) |
| 2(b) | Impulse on $Q: I=w \times 1.2$ |  | M1 |
|  | Solve for $w: w=v+6 e=\frac{42-72 \times \frac{1}{4}}{19}+6 \times \frac{1}{4}$ | Accept unsimplified with $e$ substituted. <br> Have to be using $w$ in part <br> (b) $w=\frac{105}{38}=2.763 \ldots . . \text { seen or }$ implied | B1 |
|  | $I=1.2 \times \frac{42}{19} \times \frac{5}{4}=\frac{63}{19}(=3.32)(\mathrm{N} \mathrm{s})$ | 3.3 or better | A1 |
|  |  |  | (3) |
|  | Alternative |  |  |
|  | Impulse on $\mathrm{Q}=-$ impulse on $P$ |  |  |
|  | $=-0.7(v-6)$ | Accept negative here | M1 |
|  | $=-0.7\left(\frac{42-\frac{1}{4} \times 72}{19}-6\right)$ | Substitute for $e$ in their $v$ $v=\frac{24}{19}=1.263 \ldots$. seen or implied Accept negative here. | B1 |



| Question | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 3(a) | $\begin{aligned} & \text { Use } \mathbf{v}=\lambda(\mathbf{i}+\mathbf{j}) \text { : } \\ & 6 T^{2}+6 T=3 T^{2}+24 \end{aligned}$ | Form an equation in $t, T$ or $\lambda$ $\lambda^{2}-108 \lambda+2592=0$ | M1 |
|  | Solve for $T \quad 3 T^{2}+6 T-24=0$, | Simplify to quadratic in $t, T$ or $\lambda$ and solve. | M1 |
|  | $(T+4)(T-2)=0, T=2$ | $T=2$ only | A1 |
|  | If they score M1 and then state $T=2$ allow 3/3 |  |  |
|  | If they guess $T=2$ and show that it works then allow $3 / 3$. |  |  |
|  | If all we see is $T=2$ with no equation then $0 / 3$ for (a) but full marks are available for (b) and (c). |  |  |
|  |  |  | (3) |
| 3(b) | Differentiate: $\mathbf{a}=(12 t+6) \mathbf{i}+6 \mathbf{j} \mathbf{j}$ | Majority of powers going down Need to be considering both components | M1 |
|  |  | Correct in $t$ or $T$ | A1 |
|  | $=30 \mathbf{i}+12 \mathbf{j}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ | Cao | A1 |
|  |  |  | (3) |
| 3(c) | Integrate : $\mathbf{r}=\left(2 t^{3}+3 t^{2}(+A)\right) \mathbf{i}+\left(t^{3}+24 t(+B)\right) \mathbf{j}$ | Clear evidence of integration. <br> Need to be considering both components. <br> Do not need to see the constant(s). | M1 |
|  | -1 each error |  | A2 |
|  | If the integration is seen in part (a) it scores no marks at that stage, but if the result is used in part (c) then the M1A2 is available in part (c) |  |  |
|  | $\boldsymbol{O A}=28 \mathbf{i}+56 \mathbf{j} \quad$ Use their $T$ |  |  |
|  | Distance $=28 \sqrt{5}=62.6(\mathrm{~m})$ | Dependent on previous M1 Use of Pythagoras on their $\boldsymbol{O A}$ | DM1 |
|  | 63 or better, $\sqrt{3920}$ |  | A1 |
|  | NB: Incorrect $T$ can score $2 / 3$ in (b) and 4/5 in (c) |  |  |
|  |  |  | (5) |
|  | (11 marks) |  |  |


| 4(a) | Resolve perpendicular to the plane: $R=2 g \cos \alpha$ |  | B1 |
| :---: | :---: | :---: | :---: |
|  | Use $F=\mu R: F=\frac{1}{4} \times 2 g \times \frac{4}{5}\left(=\frac{2 g}{5}\right)$ | $\text { with } \frac{1}{4} \text { and their } R$ | M1 |
|  | Work done: $\mathrm{WD}=2.5 \times F$ | For their $F$ | dM1 |
|  | $=2.5 \times \frac{2 g}{5}=9.8(\mathrm{~J})$ | Accept $g$ | A1 |
|  | If a candidate has found the total work done but you can see the correct terms/processes for finding the work done against friction, give B1M1DM1A0 (3/4) |  |  |
|  |  |  | (4) |
| 4(b) | Change in PE : $\pm(4 g \times 2.5-2 g \times 2.5 \sin \alpha)$ | Requires one gaining and one losing Condone trig confusion | M1 |
|  | $= \pm(4 g \times 2.5-2 g \times 1.5)$ | $\pm$ (correct unsimplified) | A1 |
|  | PE lost $=7 \mathrm{~g}=68.6$ (J) | or 69 (J) Accept 7g | A1 |
|  |  |  | (3) |
| 4(c) | KE gained $+\mathrm{WD}=$ loss in GPE | The question requires the use of work-energy. Alternative methods score 0/4. <br> Requires all terms but condone sign errors (must be considering both particles) | M1 |
|  | $\frac{1}{2} \times 4 v^{2}+\frac{1}{2} \times 2 v^{2}+(\text { their }(\mathrm{a}))=(\text { their }(\mathrm{b}))$ | Correct unsimplified. -1 each error | A2 |
|  | $3 v^{2}=6 g$ |  |  |
|  | $v=\sqrt{2 g}=4.43\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ | or 4.4. Accept $\sqrt{2 g}$ | A1 |
|  |  |  | (4) |
|  | Alternative |  |  |
|  | Equations of motion for each particle leading to $T=\frac{12 g}{5}=23.52$ followed by a W-E equation for $P$ : $2.5 T=\frac{1}{2} \times 2 v^{2}+2 g \times 2.5 \sin \alpha+(a) \mathrm{M} 1 \mathrm{~A} 2$ | Equations of motion for each particle leading to $T=\frac{12 g}{5}=23.52$ followed by a W-E equation for $Q$ : $\frac{1}{2} \times 4 v^{2}+2.5 T=4 g \times 2.5$ |  |
|  | $v=\sqrt{2 g}=4.43\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ |  | A1 |


| Question | Scheme | Marks |
| :---: | :---: | :---: |
| $4(c)$ | Use of $\alpha=36.9$ gives correct answers to 3 sf |  |
|  | Use of $\alpha=37$ gives correct answers to 2 sf and more than this is not justified, so A 0 if they give 3 sf in this case. |  |
| (11 marks) |  |  |


| Question | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 5 | Moments about vertical axis (AF): | Requires all terms and dimensionally correct but condone $g$ missing | M1 |
|  | $\frac{M g}{2} \times \frac{1}{2} a+\frac{M g}{2} \times 1.5 a+3 a k M g=M g(1+k) \bar{x}$ | -1 each error <br> Accept with $M$ and/or $g$ not seen. | A2 |
|  | $\left(\bar{x}=\frac{1+3 k}{1+k} a\right)$ |  |  |
|  | Moments about horizontal axis ( $A B$ or $F E$ ): | Requires all terms and dimensionally correct but condone $g$ missing | M1 |
|  | $\frac{M g}{2} \times 1.5 a+\frac{M g}{2} \times 3.5 a+4 a k M g=M g(1+k) \bar{y}$ | -1 each error. <br> Accept with $M$ and/or $g$ not seen. <br> Do not penalise repeated errors. | A2 |
|  | $\left(\bar{y}=\frac{2.5+4 k}{1+k} a\right)$ |  |  |
|  |  | Working with axes through F gives $\begin{aligned} & \bar{x}=\frac{1+3 k}{1+k} a \text { and } \\ & \bar{y}=\frac{1.5}{1+k} a \end{aligned}$ |  |
|  | SR: A candidate working with a mixture of mass and mass ratio can score $4 / 6$ M1A0A0M1A2 |  |  |
|  | Use of $\tan \theta$ with their distances from $A F \&$ $A B$ | Must be considering the whole system. Allow for inverted ratio. | M1 |
|  | $\tan \theta=\frac{M+3 k M}{2.5 M+4 k M}\left(=\frac{4}{7}\right)$ | or exact equivalent | A1 |
|  | Equate their $\tan \theta$ to $\frac{4}{7}$ and solve for $k$ : $7 M+21 k M=10 M+16 k M$ |  | M1 |
|  | $k=\frac{3}{5}$ | cso | A1 |
|  |  |  | (10) |
|  | Alternative for the people who start by considering only the L shape. |  |  |


| Question | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 5 <br> continued | $\bar{x}=a \text { and } \bar{y}=\frac{5}{2} a \text { or } \frac{3}{2} a$ | M1 (for either) requires all terms and dimensionally correct but condone $g / M$ missing. A1 for each correct. | M1A2 |
|  | Combine with the particle | M1 (for both) requires all terms and dimensionally correct but condone $g$ missing. A1 for each correct. | M1A2 |
|  | See over for a more geometrical approach |  |  |
|  |  | Candidate starts by finding centre of mass at $\left(a, \frac{3}{2} a\right)$ relative to $F$ (or equivalent), M1A2 scored |  |
|  |  | Use of $\tan \theta$ with their distances for finding $d_{1}$ or $d_{2}$. | M1 |
|  |  | Obtain length of a side in a triangle containing $d_{1}$ $\left(\frac{5}{2} a\right) \tan \theta-a\left(=\frac{3}{7} a\right)$ <br> Correct for their centre of mass | A1 |


| Question | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 5 <br> continued |  | $d_{1}=\left(\frac{3}{7} a\right) \cos \theta$ <br> Correct for their centre of mass | A1 |
|  |  | Use of $\tan \theta$ to find second distance $3 a-4 a \tan \theta=\frac{5}{7} a$ | M1 |
|  |  | $d_{2}=\frac{5}{7} a \cos \theta$ | A1 |
|  | Moments about $A$ : $M d_{1}=k M d_{2}$ |  | M1 |
|  | $\frac{3}{7} a \cos \theta=k \times \frac{5}{7} a \cos \theta \Rightarrow k=\frac{3}{5}$ |  | A1 |
|  |  |  | (10) |
| (10 marks) |  |  |  |



| Question | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 6(c) continued | Alternative |  |  |
|  | For $\varphi>\theta, \tan \phi>\tan \theta$ |  |  |
|  | $\tan \varphi=\frac{Y}{X}=\frac{4-\frac{5 a}{b} \cos ^{2} \theta}{\frac{5 a}{b} \cos \theta \sin \theta}>\tan \theta$ |  | M1 |
|  | $4-\frac{5 a}{b} \cos ^{2} \theta>\frac{5 a}{b} \sin ^{2} \theta$ |  |  |
|  | $4>\frac{5 a}{b}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \Rightarrow b>\frac{5}{4} a$ | cso | A1 |
|  |  |  | (2) |
| (11 marks) |  |  |  |


| 7(a) | Equate horizontal components of speeds: |  | M1 |
| :---: | :---: | :---: | :---: |
|  | $u \cos \theta^{\circ}=6 \cos 45^{\circ}(=3 \sqrt{2})(4.24 \ldots$. | Correct unsimplified | A1 |
|  | Use suvat for vertical speeds: $u \sin \theta^{\circ}-2 g=-6 \sin 45^{\circ}$ | Condone sign errors | M1 |
|  | $(u \sin \theta=2 g-3 \sqrt{2})$ | Correct unsimplified | A1 |
|  | Divide to find $\tan \theta$ : $\tan \theta=\frac{2 g-6 \sin 45}{6 \cos 45}$ | Dependent on previous 2 Ms . Follow their components. | DM1 |
|  | $\begin{aligned} & \quad\left(=\frac{2 g-3 \sqrt{2}}{3 \sqrt{2}}=3.61 . .\right) \Rightarrow \\ & \theta=74.6 \quad(75) \end{aligned}$ | ( $u=15.93 \ldots .$. | A1 |
|  |  |  | (6) |
| 7(b) | At max height, speed $=u \cos \theta\left(=3 \sqrt{2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\right)$ |  | B1 |
|  | $\mathrm{KE}=\frac{1}{2} \times 0.7 \times(3 \sqrt{2})^{2}(\mathrm{~J})$ | Correct for their $v$ at the top, $v \neq 0$ | M1 |
|  | $=6.3(\mathrm{~J})$ | accept awrt 6.30. CSO | A1 |
|  |  |  | (3) |
| 7(c) | When P is moving upwards at $6 \mathrm{~m} \mathrm{~s}^{-1}$ | Use suvat to find first time $v=6$ | M1 |
|  | $u \sin \theta-g t=3 \sqrt{2}$ |  | A1 |
|  | $2 g-3 \sqrt{2}-g t=3 \sqrt{2}$ | Solve for $t$ | M1 |
|  | $t=\frac{2 g-6 \sqrt{2}}{g}=1.13 \ldots$. | Sensitive to premature approximation. Allow 1.14. | A1 |
|  | $T=2-1.13=0.87$ | CAO accept awrt 0.87 | A1 |
|  |  |  | (5) |
|  | Alternative |  |  |
|  | $6 \sin 45=0+g t$ | find time from top to $A$ : | M1A1 |
|  | $T=2 t=\frac{\frac{12 \sqrt{2}}{2}}{g}=0.87$ | Correct strategy Correct unsimplified | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ |
|  |  |  | (5) |



