Pearson

Mark Scheme (Results)

October 2017

Pearson Edexcel International Advanced Level Chemistry (WCH01) Paper 01 Unit 1: The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2017
Publications Code WCH01_01_MS_1710
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	1. The only correct answer is D \boldsymbol{A} is not correct because both should be lower \boldsymbol{B} is not correct because boiling temperature is lower \boldsymbol{C} is not correct because density is lower	(1)

Question Number	Correct Answer	Mark
$\mathbf{2}$	2. The only correct answer is C	(1)
	A is not correct because it is an empirical formula B is not correct because there are too few hydrogens	

Question Number	Correct Answer	Mark
$\mathbf{3}$	3. The only correct answer is C	(1)
	\boldsymbol{A} is not correct because it is too few	
\boldsymbol{B} is not correct because it is too few		
\boldsymbol{D} is not correct because it is too many		

Question Number	Correct Answer	Mark
$\mathbf{4}$	4. The only correct answer is A	(1)
	B is not correct as not a -2-ene \boldsymbol{C} is not incorrect as not an E isomer	

Question Number	Correct Answer	Mark
$\mathbf{5}$	5. The only correct answer is B (1) \boldsymbol{A} is not correct as not the main product \boldsymbol{C} is not correct as not the main product \boldsymbol{D} is not correct as not the main product	

Question Number	Correct Answer	Mark
$\mathbf{6}$	6. The only correct answer is C \boldsymbol{A} is not correct because it contains spectator sulfate ions and incorrect state of product	(1)
	B is not correct because it contains spectator sulfate ions \boldsymbol{D} is not correct because oxide ions are not involved in this way	

Question Number	Correct Answer	Mark
$\mathbf{7}$	7. The only correct answer is A \boldsymbol{B} is not correct because as it is based on 1 neutron per molecule \boldsymbol{C} is not correct because it is based on half a neutron per atom \boldsymbol{D} is not correct because it is not multiplied by 6.0	(1)

Question Number	Correct Answer	Mark
$\mathbf{8}$	8. The only correct answer is B A is not correct because it is has been divided by incorrect value \boldsymbol{C} is not correct because it has been divided by only one HCl value \boldsymbol{D} is not correct because it has been divided by only one NaCl value	(1)

Question Number	Correct Answer	Mark
$\mathbf{9}$	9. The only correct answer is C \boldsymbol{A} is not correct because the value has been incorrectly rounded	(1)
	B is not correct because the value has been incorrectly rounded and divided by 1000 \boldsymbol{D} is not correct because the value is divided by 1000	

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	$\mathbf{1 0 .}$ The only correct answer is B A is not correct because the volume of oxygen left has been ignored \mathbf{C} is not correct because water has been included in the calculation and the volume of oxygen left ignored	(1)
	\mathbf{D} is not correct because water has been included in the calculation	

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	11. The only correct answer is C \boldsymbol{A} is not correct because it has not been converted to cm^{3}	(1)
	B is not correct because it has not been converted to cm^{3} and twice the hydrogen moles have been used	\boldsymbol{D} is not correct because twice the hydrogen moles have been used

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	$\mathbf{1 2}$ The only correct answer is A \boldsymbol{B} is not correct because the mass of three oxygens are much greater than one oxygen and one carbon	(1)
\boldsymbol{C} is not correct because there is insufficient nitrogen		
\boldsymbol{D} is not correct because there is insufficient nitrogen		

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	$\mathbf{1 3 . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ D ~}$	(1)
	\boldsymbol{A} is not correct because it is too high	
\boldsymbol{B} is not correct because it is too high		
\boldsymbol{C} is not correct because it is too high		

Question Number	Correct Answer	Mark		
$\mathbf{1 4}$	14. The only correct answer is D \boldsymbol{A} is not correct because it is the opposite of D and both statements are incorrect	(1)		
\boldsymbol{B} is not correct because it is not an exact value				
\boldsymbol{C} is not correct because m is not an exact value			\quad	
:---				

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	$\mathbf{1 5 . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~}$	(1)
	\boldsymbol{A} is not correct because the negative ion is slightly polarised	
	\boldsymbol{B} is not correct because positive ions cannot be polarised	
\boldsymbol{D} is not correct because the negative ion is very polarised		

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	$\mathbf{1 6 .}$ The only correct answer is D \boldsymbol{A} is not correct because the sign is incorrect \boldsymbol{B} is not correct because there are no multiples and the sign is incorrect \boldsymbol{C} is not correct because there are no multiples	$\mathbf{(1)}$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	$\mathbf{1 7 . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ A ~}$	(1)
	\boldsymbol{B} is not correct because it involves liquids	
\boldsymbol{C} is not correct because it involves liquids		
\boldsymbol{D} is not correct because it involves liquids		

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	18. The only correct answer is D \boldsymbol{A} is not correct because it would be true if 0.02 mol were added to $100 \mathrm{~cm}^{3}$ \boldsymbol{B} is not correct because it would be true if 0.02 mol were added to $50 \mathrm{~cm}^{3}$ \boldsymbol{C} is not correct because it would be true if 0.01 mol were added to $50 \mathrm{~cm}^{3}$	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	19. The only correct answer is D \boldsymbol{A} is not correct because they can be determined directly by experiment	(1)
\boldsymbol{B} is not correct because they can be determined directly by		
experiment		
C is not correct because they can be determined directly by experiment		

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	20. The only correct answer is A \boldsymbol{B} is not correct because oxygen contains a double bond \boldsymbol{C} is not correct because carbon dioxide contains two double bonds \boldsymbol{D} is not correct because oxygen contains one double bond and carbon dioxide contains two double bonds	(1)

(TOTAL FOR SECTION A = 20 MARKS)

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i)}$	$3 \mathrm{Fe}^{2+}+\mathrm{NO}_{3}{ }^{-}+4 \mathrm{H}^{+} \rightarrow 3 \mathrm{Fe}^{3+}+\mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	Eqs with iron ions cancelled out as spectators	(2)
	ALLOW H^{+}shown as $\mathrm{H}^{+}+3 \mathrm{H}^{+} / 2 \mathrm{H}^{+}+6 \mathrm{H}^{+}$ correct species correct ratios ALLOW Equal numbers of sulfate ions included on each side (3 or 6) scores (1) Equation with HNO on left not ionised and correct H^{+}from sulfuric acid scores (1) IGNORE state symbols even if incorrect	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i i) ~}$	277.9 (g)		(1)
	ALLOW		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i i i)}$	(0.050×277.9) $=13.895 / 13.90 / 13.9 / 14(\mathrm{~g})$ TE from (a)(ii) IGNORE SF unless 1SF	13.89	(1)

Question Number	Acceptable Answers	Reject	Mark
21(a)(iv)	(From the equation 6 mol of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ react with $3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$) mol requires 0.025 mol $\begin{align*} & \text { Volume } \left.=\frac{(1000 \times 0.025}{2}\right) \\ & =12.5\left(\mathrm{~cm}^{3}\right) / 0.0125 \mathbf{~ d m}^{3} \tag{1} \end{align*}$ OR $12.5 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ contains $\begin{equation*} 12.5 \times 2 / 1000=0.025 \mathrm{~mol} \tag{1} \end{equation*}$ (From the equation) this is equivalent to 0.05 mol of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (v)}$	teat pipette / measuring cylinder (small)	Beaker/ Glass/ burette/ spatula/ flask	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (v i) ~}$	(ionic) Precipitation		(1)
	ALLOW Precipitant/ precipitate		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i)}$	$2 \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$		(1)
	ALLOW $2 \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$		
	Species Balancing and state symbols \quad (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (b) (i i) ~}$	$25 \mathrm{~cm}^{3} / 0.025 \mathrm{dm}^{3}$		(1)
	TE from (i) e.g. If ratio $=1: 1$ then $12.5 \mathrm{~cm}^{3} / 0.0125 \mathrm{dm}^{3}$ If b(i) is blank allow $25 \mathrm{~cm}^{3} / 0.025 \mathrm{dm}^{3}$		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	For indicator tests the second mark can be allowed if solution is used. MP1: Spot onto red litmus paper ALLOW Use red litmus paper Dip red litmus paper into mixture Note: mark MP2 independently if a suitable indicator has been selected MP2: Turns blue (when excess ammonia added) OR other suitable indicator papers, including universal indicator / UI / pH paper with alkaline colour (green/ blue/ purple) OR Use a pH meter or UI paper pH value > 7	Smell of ammonia/ Testing for ammonia with HCl fumes/ Using litmus on fumes from heating solution with NaOH or from just heating solution	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i)}$	Dip glass rod in solution (add to microscope slide), cool, crystals form	Heat to constant mass/ heat until no more water is given off	(1)
	ALLOW Observation of crystals starting to form around the edge of the solution / on surface/ in solution OR Reference to two thirds/ about half of volume (of solution) removed		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i i)}$	Let the mixture cool/evaporate slowly	Any use of heat	(1)
	ALLOW Leave in the air (to dry)/ keep at low temperature/ leave a long time/ leave it to cool IGNORE Further filtering after crystal are formed. Comments on stirring	Filter concentrated solution	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i i i) ~}$	Wash with (a small volume of cold) water (1)		(2)
	Dry crystals between filter papers/by dabbing with filter paper/ on filter paper/ with paper towel/ in a desiccator ALLOW Dry in the sun/ in an oven/ warm place IGNORE Leave to dry	Just "drying"/ Just "dry on paper"	In a hot oven

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 1 (d)}$	$(0.050 \times 40 / 100)=0.020(\mathrm{~mol})$	(1)		(2)
	$0.020 \times 482=9.6(4)(\mathrm{g})$	(1)		
	OR			
	$0.050 \times 482=24.1(\mathrm{~g})$	(1)		
	$24.1 \times 40 / 100=9.6(4)(\mathrm{g})$	(1)		
	40% of $482=192.8$	(1)		
	$192.8 \times 0.05=9.6(4)(\mathrm{g})$	(1)		

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	$\mathrm{C}_{2} \mathrm{H}_{5} / \mathrm{H}_{5} \mathrm{C}_{2}$	$\mathrm{C}_{4} \mathrm{H}_{10}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$
$\mathrm{C}_{n} \mathrm{H}_{2 n+1}$	$\mathbf{(1)}$		
	IGNORE		
Displayed formula			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i i)}$	There is only one place a methyl group can be attached (without extending the carbon chain)/ If added to C1 or C3 it would not be branched/ If added to C1or C3 it would be butane/ Attachment of methyl to either end gives butane/ The methyl is on C2 counting from either end	(1)	
ALLOW There are no other isomers of methylpropane IGNORE methylpropane is symmetrical			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (b) (i) ~}$	$\mathrm{C}_{4} \mathrm{H}_{10}+6 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$	Incorrect alkane formula	(1)
	ALLOW Multiples IGNORE state symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	2-methylpropane is (in)flammable / could be ignited (by an electric spark) / explosive	It may be burned/ "easy to burn"/ "takes part in combustion reactions" "impurities cause explosions"	(1)
	ALLOW Catches fire easily IGNORE Volatile/ it is a gas/ toxic Greenhouse gas Corrosive Irritant		

Question	Acceptable Answers	Reject	Mark
Number	(Free) radical	(1) 22(c)(i)	
	(1)		(2)
	ALLOW In either order IGNORE Homolytic fission/ halogenation		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (c) (i i)}$	$\mathrm{Cl}-\mathrm{Cl} \rightarrow 2 \mathrm{Cl} \cdot / \mathrm{Cl} \cdot+\mathrm{Cl} \cdot$ Arrows must start from near bond and finish on or just beyond Cl. One arrow above and one below bond.	Full arrows Cl^{-}ions	(1)
	ALLOW Omission of unpaired electron in this part Electron pair shown in Cl-Cl bond All outer shell electrons shown		

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 2 (c) (i i i) ~}$	$\mathrm{Cl} \cdot+\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \cdot+\mathrm{HCl}$	(1)		(2)
	$\mathrm{C}_{4} \mathrm{H}_{9} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl} \cdot$			
In any order				
ALLOW				
Skeletal, displayed, structural				
Use of incorrect alkane score max (1)				
Penalise omission of unpaired electron dot once only in this part IGNORE Curly arrows	(1)			

Question Number	Acceptable Answers	Reject	Mark
22(d)(i)	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} /\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}$ ALLOW $\begin{aligned} & \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{3} \\ & \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right) \mathrm{CH}_{3} \end{aligned}$ IGNORE Fully displayed/ skeletal/ extra brackets	End CH_{3} fully displayed	(1)

Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	Termination/ Termination step/ Termination reaction/ Chain termination/ Terminal (step) IGNORE Formulae/ equations		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (d) (i i i) ~}$	Two (radicals) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \cdot$ combine / react/ join OR two radicals $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ combine OR the equation $2 \mathrm{C}_{4} \mathrm{H}_{9}{ }^{\bullet} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}$ Allow any valid response with variables of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ eg $\mathrm{C}_{4} \mathrm{H}_{9}$		(1)

Question Number	Acceptable Answers	Reject	Mark
22(e)(i)	Dehydrogenation Elimination (of hydrogen) ALLOW Oxidation (Catalytic) crackingHydrogenation Reforming Reduction Redox Decomposition	(1)	

Question Number	Acceptable Answers	Reject	Mark
*22(e)(ii)			(4)
		H missing from bonds	
	MP1: Curly (not half headed) arrow from $\mathrm{C}=\mathrm{C}$ to H and Curly arrow from bond in $\mathrm{H}-\mathrm{Br}$ to Br MP2: Tertiary carbocation	$\begin{equation*} \mathrm{C}^{\delta+} \tag{1} \end{equation*}$	
	MP3: Br must have lone pair and negative charge and Curly arrow from (lone pair) on Br^{-}to C^{+} From anywhere on the Br^{-}	$\mathrm{Br}^{\text {- }}$	
	MP4: Dipole on HBr bond, and correct final product ALLOW TE from incorrect carbocation		
	Formation of primary bromoalkane loses second mark Mechanism for propene going to 2-bromopropane scores max (3) for MP1, MP2 and MP3, propene to 1bromopropane scores max (2) for MP1 and MP3		

Question Number	Acceptable Answers	Reject	Mark
22(e)(iii)	(2,2,4-trimethylpentane:) (Dimers:) OR ALLOW CH_{3} on branches of skeletal formula / Structural/displayed formulae for both IGNORE Bond angles/ orientation		(2)

Question Number	Acceptable Answers	Reject	Mark
22(f)(i)	Isooctane is a branched chain molecule (and heptane is a straight chain molecule) ALLOW Isooctane has branches/ is branched / has branched chains.	(1)	
IGNORE The chain is longer/ has more C atoms/ is more stable / more chains			

Question Number	Acceptable Answers	Reject	Mark
22(f)(ii)	They reduce pre-ignition/ knocking/ pinking OR More efficient combustion Less incomplete combustion/ More energy produced per mole/ Less carbon monoxide produced/ Cleaner combustion/ More miles per gallon ALLOW smooth combustion IGNORE More volatile Highly flammableLess global warming/ Cheaper/ Slower rate of combustion	(1)	

(Total for Question 22 = 21 marks)

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Argon is a gas (in its standard state) ALLOW Argon is a noble gas Argon exists as single atoms/ is monatomic ALLOW Ar molecules are monatomic IGNORE Argon is unreactive	Just "Argon consists of atoms"	(2)

Question Number	Acceptable Answers	Reject	Mark
*23(a)(ii)	MP1: Recognition that Ar would come after K in the Periodic Table (because Ar has greater atomic mass) OR K has smaller atomic mass than Ar / Ar has greater atomic mass than K		(2)
	IGNORE Atomic masses vary because of different proportions of isotopes. MP2: One of the following explanations: chemical properties would not match other Group 1/0 elements it would put K with noble gases it would put Ar with alkaline metals elements in the Groups (1/0) would not have similar properties This would break periodic trends in properties e.g trend in ionisation energies Number of electrons in the outer shell would be out of order	$(\mathbf{l}$.	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 3 (b) (i)}$	${ }^{35}$ Cl consists of 17 protons and 18 neutrons	17 electrons	(2)		
	Isotopes have the same number of protons (and electrons) but different numbers of neutrons	OR Isotopes have the same atomic number but different mass number	(1)	\quad	
:---					

Question Number	Acceptable Answers		Reject	Mark
23(b)(ii)	MP1 Let y be percentage abundance of 35			(2)
	$\frac{35 y+(100-y) 37}{100}=35.453$	(1)		
	MP2 $\begin{aligned} & 35 y+3700-37 y=3545.3 \\ & 154.7=2 y \\ & 77.35=y \end{aligned}$			
	${ }^{35} \mathrm{Cl}=77.35(\%) \quad{ }^{37} \mathrm{Cl}=22.65(\%)$	(1)		
	OR MP1 y may be taken as a fraction in which case $35 y+(1-y) 37=35.453$	(1)		
	$\begin{aligned} & \text { MP2 } \\ & 0.7735=y \end{aligned}$			
	${ }^{35} \mathrm{Cl}=77.35(\%) \quad{ }^{37} \mathrm{Cl}=22.65(\%)$	(1)		
	Correct answer with no working	(2)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c) (i)}$	$\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}^{+}(\mathrm{g})+\mathrm{e}^{-}$	Cl_{2}	(1)
	OR		
	$\mathrm{Cl}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Cl}^{+}(\mathrm{g})$		

Question Number	Acceptable Answers	Reject	Mark
*23(c)(ii)	MP1 Nuclear charge/number of protons is increasing (1)	MP2 While electron is removed from the same quantum shell (so greater attraction) / Electron has same amount of shielding	Less shielding in Ar
IGNORE The outer shell in argon is full. Electrons in argon are all paired in orbitals. Chlorine has an unpaired p electron. The atomic radius of argon is smaller. Comments on charge density.	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c) (i i i)}$	Argon (1) Potassium (1)		(2)
	(3)p (4)s ALLOW Any orientation of p orbital More than one p orbital for Ar 2 correct diagrams without labels scores (1) IGNORE not be shown Electrons in boxes diagrams Dot and cross diagrams		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (d) (\mathbf { i })}$		Covalent bonding	
	Brackets not essential 1 Max if changes not shown ALLOW All crosses or all dots Diagram showing outer shells only; potassium may be shown with 0 or 8 electrons and charges correct. Scores (1)		(2)

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	All three have the same number of electrons/ have 18 electrons/ are isoelectronic/ have the same electron configuration/ have configuration 2,8,8/ have the configuration of argon/ have 8 outer shell electrons	(1)	
ALLOW Have full outer shells/ Have the same number of outer shell electrons			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (i)}$	Hess's law / Hess Law	Conservation of energy and The total enthalpy change (in a reaction) is independent of the route	$\mathbf{(1)}$

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	One mark for labels for arrows with or without EA being shown Electron affinity $\begin{align*} & =-436.7-[89.2+419+121.7+(-711)] \\ & \{\text { Hess applied correctly }\} \tag{1}\\ & =-355.6 /-356\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Correct answer with no working scores both calculation marks. $+355.6 /+356\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 calculation mark ALLOW TE from a transcription error of one of the data or from 2×121.7 (gives -477.3)	EA in wrong place Use of 2×121.7	(3)

(Total for Question 23 = 20 marks)

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = $\mathbf{8 0}$ MARKS

