Pearson

Mark Scheme (Results)

October 2017

Pearson Edexcel International
Advanced Level In Chemistry (WCH04) Paper 1 Rates, Equilibria and Further

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2017
Publications Code WCH04_01_1710_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter - organise information clearly and coherently, using specialist vocabulary when appropriate. Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1 (a)}$	$\mathbf{1 (a) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ D ~}$ A is not correct because there are equal numbers of moles of gas on each side so volume is unchanged in the reaction	(1)
B is not correct because there are equal numbers of moles of gas on each side so pressure is unchanged in the reaction \mathbf{C} is not correct because although HBr is acidic, in the absence of water pH will not change		

Question Number	Correct Answer	Mark
$\mathbf{1 (b)}$	$\mathbf{1 (b) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ D ~}$ A is not correct because the rate law for a reaction cannot be deduced from its chemical equation	(1)
B is not correct because the rate law for a reaction cannot be deduced from its chemical equation		
C is not correct because the rate law for a reaction cannot be deduced from its chemical equation		

Question Number	Correct Answer	Mark
$\mathbf{2}$	2. The only correct answer is B A is not correct because this is the graph for a zero order reaction \mathbf{C} is not correct because concentration is increasing so this cannot be correct (shows zero order for product concentration)	(1)
D is not correct because concentration is increasing so this cannot be correct (shows first order for product concentration)		

Question Number	Correct Answer	Mark
$\mathbf{3}$	3. The only correct answer is B A is not correct because the formula shows that half life is proportional to initial concentration so cannot increase as reactant is consumed C is not correct because the formula shows that half life is proportional to initial concentration so cannot remain constant D is not correct because the formula shows that half life is proportional to initial concentration so cannot remain constant	(1)

Questio n Number	Correct Answer	Mark
$\mathbf{4}$	4. The only correct answer is C	
	A is not correct because activation energy is a kinetic factor and has no bearing on thermodynamic feasibility	
	B is not correct because $\Delta S_{\text {surroundings is negative for endothermic }}$ reactions	
	D is not correct because if a reaction is thermodynamically feasible, $\Delta S_{\text {total }}$ must be positive	

Question Number	Correct Answer	Mark
$\mathbf{5}$	5. The only correct answer is A B is not correct because this is probably true but is not the best explanation \mathbf{C} is not correct because this is a true statement but does not explain the decomposition at high temperature D is not correct because this is a true statement but does not explain the decomposition at high temperature	(1)

Question Number	Correct Answer	Mark
$\mathbf{6}$	6. The only correct answer is A B is not correct because this is the reverse of the correct answer \mathbf{C} is not correct because this is true but not relevant D is not correct because this is true but not relevant	(1)

Question Number	Correct Answer	Mark
$\mathbf{7}$	7. The only correct answer is B A is not correct because there are more moles of gas on the RHS so the reverse statement is correct	(1)
C is not correct because reactions do not zig-zag in this way when the pressure is changed		
D is not correct because this zig-zagging of reactions is a common misconception		

Question Number	Correct Answer	Mark
$\mathbf{8}$	8. The only correct answer is C A is not correct because this omits the $p(\mathrm{H} 2 \mathrm{O}(\mathrm{g}))$ B is not correct because this is the reciprocal of response A D is not correct because this is the reciprocal of the correct response	(1)

Question Number	Correct Answer	Mark
$\mathbf{9 (a)}$	9(a). The only correct answer is \mathbf{A} B is not correct because this shows the units the same for both equations \mathbf{C} is not correct because this is derived from the reciprocals of the two equilibrium constant expressions	(1)
D is not correct because this shows the units the same for both equations but using the reciprocal of the values in B		

Question Number	Correct Answer	Mark
$\mathbf{9 (b)}$	9(c). The only correct answer is B \mathbf{A} is not correct because it is an exothermic reaction so rate is increased and yield decreased when temperature increases	(1)
	C is not correct because it is an exothermic reaction so rate is increased and yield decreased when temperature increases	
\mathbf{D} is not correct because it is an exothermic reaction so rate is increased and yield decreased when temperature increases		

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	$\mathbf{1 0 .}$ The only correct answer is D A is not correct because equilibrium constants are unaffected by pressure \mathbf{B} is not correct because equilibrium constants only increase with temperature when the reactions are endothermic	(1)
C is not correct because the effect of temperature on K only depends on $\Delta S_{\text {total }}$		

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	$\mathbf{1 1}$. The only correct answer is B A is not correct because HNO_{3} is a base in this system \mathbf{C} is not correct because HNO_{3} is a base in this system \mathbf{D} is not correct because both of these species are bases in this system	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	12.The only correct answer is C A is not correct because the proportion of weak acid molecules dissociating increases with dilution	(1)
B is not correct because the proportion of weak acid molecules dissociating increases with dilution	D is not correct because the pH increases as the concentration of protons decreases	

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	13. The only correct answer is D A is not correct because the buffers have the same ratio of acid to conjugate base so the same pH	(1)
B is not correct because the buffers have the same ratio of acid to conjugate base so the same pH	C is not correct because the more concentrated buffer will have the greater resistance to pH change	

Question Number	Correct Answer	Mark
$\mathbf{1 4 (a)}$	$\mathbf{1 4 (a) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~}$	(1)
	A is not correct because P has five proton environments B is not correct because Q has four proton environments D is not correct because S has four proton environments	

Question Number	Correct Answer	Mark
$\mathbf{1 4 (b)}$	$\mathbf{1 4 (b) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ B ~}$	(1)
	A is not correct because P cannot be reduced	
C is not correct because R cannot be oxidised		
D is not correct because S cannot be oxidised		

Question Number	Correct Answer	Mark
$\mathbf{1 4 (c)}$	$\mathbf{1 4 (c) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ C ~}$	(1)
	A is not correct because there is no reaction B is not correct because there is no reaction D is not correct because there is no reaction	

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	15. The only correct answer is A B is not correct because this is inefficient in terms of energy consumption	(1)
C is not correct because this is inefficient in terms of energy consumption \mathbf{D} is not correct because this is inefficient in terms of energy consumption		

Questio n Number	Correct Answer	Mark
$\mathbf{1 6}$	16. The only correct answer is B	(1)
	A is not correct because MRI uses radio waves (it is based on nmr)	
	C is not correct because MRI uses radio waves (it is based on nmr)	

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i)}$	Rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ ALLOW r/R	Round brackets	(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i)}$	MP1 Plot a graph of concentration against time (1)	(2)	
MP2 Draw a tangent at the required concentration and measure its gradient ALLOW Measure the gradient at the required concentration MP2 depends on MP1Just 'measure the gradient'	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i i)}$	$\left(k=\right.$ Rate $\left./\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\right)$ $=1.9 \times 10^{-3} / 0.75$ $=2.53 \times 10^{-3} / 0.00253 \mathrm{~s}^{-1}$ (1) IGNORE SF except 1 SF Correct answer with units but no working scores (2) TE on incorrect rate equation if this is of the form Rate $={\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{\mathrm{n}}}$		(2)

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 7 (c)}$ | | | (2) |

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a)}$	$K_{p}=\frac{P^{2}\left(\mathrm{SO}_{3}\right)}{P^{2}\left(\mathrm{SO}_{2}\right) \times p\left(\mathrm{O}_{2}\right)}$	square brackets	(1)
	OR Using subscripts for substances $P^{2} \times$ OR $p(X)^{2}$ $O R$ $(p X)^{2}$		

Question Number	Acceptable Answers					Reject	Mark
18(b)(i)		SO_{2}	O_{2}	SO_{3}		Incorrect units	(3)
	mol	0.500	0.100	0.750			
	mole fraction (X)	$\begin{aligned} & 0.5 / 1.35 \\ & =0.3704 \end{aligned}$	$\begin{aligned} & 0.1 / 1.35 \\ & =0.07407 \end{aligned}$	$\begin{aligned} & 0.75 / 1.35 \\ & =0.556 \\ & \hline \end{aligned}$	(1)		
	Partial pressure $=2 \times X$	$\begin{aligned} & =2 x \\ & 0.3704 \\ & =0.741 \end{aligned}$	$\begin{aligned} & 2 \times 0.07407 \\ & =0.148 \end{aligned}$	$\begin{aligned} & 2 \times 0.556 \\ & =1.111 \end{aligned}$	(1)		
	'Notional K_{p} $=1.111^{2}$ ALLOW 'Notional K_{p} $=1.11^{2} /(0$ $\left(\mathrm{as} \neq K_{\mathrm{p}} / 2 .!\right.$ TE on 18(a) TE at each IGNORE SF Correct ans	$0.741^{2} x$ $74^{2} \times 0.1$ $x 10^{10} \mathrm{sy}$ ge xcept 1 S er with no	$148)=15$ $=15.0=$ em is not orking scor	$2\left(\mathrm{~atm}^{-1}\right)$ $15\left(\mathrm{~atm}^{-1}\right)$ equilibriu (3)	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (b) (i i)}$	$15.2\left(\mathrm{~atm}^{-1}\right) \ll 2.50 \times 10^{10}\left(\mathrm{~atm}^{-1}\right) / \mathrm{K}_{\mathrm{p}}$ and So equilibrium moves to the right Comment Mark may be awarded if this statement appears in $18(\mathrm{~b})(\mathrm{i})$ So the value of the equilibrium expression/quotient has to increase (by increasing numerator and / or decreasing denominator therefore more SO_{3} and / or less SO2 and $\left.\mathrm{O}_{2}\right)$ IGNORE References to Le Chatelier's Principle References to temperature	(2)	

Question Number	Acceptable Answers	Reject	Mark
18(b)(iii)	Ignore references to Le Chatelier's Principle and $\Delta S_{\text {system }}$ unless incorrect Accept reverse arguments The marks are stand alone MP1 ($\Delta S_{\text {surroundings }}$ is positive because the reaction is exothermic) $\Delta S_{\text {surroundings }}$ increases as T decreases and because $\Delta S_{\text {surroundings }}=-\Delta H / T$ OR $\Delta S_{\text {surroundings }}$ becomes more positive as T decreases and because $\Delta S_{\text {surroundings }}=-\Delta H / T$ OR $\begin{aligned} & \Delta S_{\text {surroundings }}=-\Delta H / T \\ & \Delta S_{\text {surroundings }}(500)=196000 /(500+273) \\ & =254 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & \begin{aligned} \Delta S_{\text {surroundings }}(450) & =196000 /(450+273) \\ & =271 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned} \end{aligned}$ ALLOW $\Delta S_{\text {surroundings }}$ becomes more positive as temperature decreases and because the reaction is exothermic MP2 \{As $\left.\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}\right\}$ $\Delta S_{\text {total }}$ increases/ becomes more positive as temperature decreases and the reaction becomes more favourable IGNORE So K increases (as $\Delta S_{\text {total }}=R \ln K$) References to the effect of temperature on $\Delta S_{\text {system }}$	Becomes less negative Becomes less negative Just $\Delta S_{\text {total }}$ is positive	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (c)}$	Any two from: Building /operating / maintaining high pressure industrial plant is very expensive ALLOW (1)	just 'cost'	
Requires (more) energy (1)			
Equilibrium conversion to SO_{3} must be very (1) large (as K is so big) Overall yield can be increased (more cheaply) by recycling unreacted SO_{2} \& O2(1) IGNORE References to the occupation of active sites on the catalyst Risk of explosion	2		

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	Potassium dichromate ((VI)) OR Sodium dichromate ((VI)) ALLOW Potassium manganate(VII) / permanganate IGNORE $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{KMnO}_{4}$ sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ and (heat under)reflux ALLOW Acid / acidified / $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$for sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ MP2 depends on the name or formula of an oxidising agent IGNORE Concentration of acid	Hydrochloric acid	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (i i)}$	(Free) radical (1) substitution IGNORE Chain reaction $/ S_{N} 1 / S_{N} 2 /$ homolytic / heterolytic (1)	Displacement	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (\text { iii) }}$	Chlorine can substitute on C_{3} OR 3-chloropropanoic acid formed OR Further (chlorine) substitution is possible OR Structure of possible product IGNORE Activation energy too high Reaction does not go to completion	Just 'other products formed' Propanoyl chloride formed	(1)

Question Number	Acceptable Answers	Reject	Mark
19(a)(iv)	Sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR Any strong acid by name or formula IGNORE Concentration of acid $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$/ Just 'acid' To convert the sodium salt to lactic acid OR Protonate the carboxylate ion / COO^{-} (formed after the reaction with NaOH) ALLOW React with carboxylate IGNORE Reactions of acid with sodium hydroxide/ OH^{-} ions	Just 'to form lactic acid'	(2)

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	$\mathrm{S}_{\mathrm{N}} 1$ Rate $=k[R C l]$ $\mathrm{S}_{\mathrm{N}} 2$ Rate $=k[\mathrm{RCl}]\left[\mathrm{OH}^{-}\right] / k[\mathrm{RCl}][\mathrm{NaOH}]$ Correct expressions but the wrong way round scores (1) Slow / rate-determining step in $\mathrm{S}_{\mathrm{N}} 1$ involves just RCl and Slow step in $\mathrm{S}_{\mathrm{N}} 2$ involves RCl and OH^{-} OR and Only one step in $\mathrm{S}_{\mathrm{N}} 2$ which involves both RCl and OH^{-} ALLOW In the RDS $\mathrm{S}_{\mathrm{N}} 1$ involves one reactant and $\mathrm{S}_{\mathrm{N}} 2$ involves two reactants $\mathrm{NaOH} /$ alkali for OH^{-} Any recognisable representation of the halogenoalkanes RDS for rate-determining step IGNORE $\mathrm{S}_{\mathrm{N}} 1$ is two steps and $\mathrm{S}_{\mathrm{N}} 2$ is one step $S_{\mathrm{N}} 1$ for tertiary $\mathrm{S}_{\mathrm{N}} 2$ for primary \& secondary Just ' $\mathrm{S}_{\mathrm{N}} 1$ involves one species and $\mathrm{S}_{\mathrm{N}} 2$ two'	Round brackets OH for OH^{-}	(3)

Question Number	Acceptable Answers	Reject	Mark
19(c)(i)	Optical isomers rotate the plane of (plane) polarised light (equally but in opposite directions)		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c) (i i)}$	Both molecules exist as non-superimposable mirror images	(1)	(2)
		(or Cl for left hand OH) OR for the label 'asymmetric carbon' Chiral centre A carbon with four different groups attached IGNORE * on asymmetric carbon without further explanation	(1)

Question Number	Acceptable Answers	Reject	Mark
*19(c)(iii)	A single enantiomer / optical isomer will be formed ALLOW Product is optically active Nucleophile / hydroxide ion / OH^{-}will attack only on the opposite side of the molecule to the Cl group ALLOW Nucleophile / hydroxide ion / OH^{-}will attack only on one side (of the molecule) Due to steric hindrance by Cl OR Because the resulting transition state is energetically the most favourable OR Resulting molecule has the opposite configuration to the reactant ALLOW Product rotates plane polarised light in the opposite direction to the reactant No TE for answer based on S 1	(3)	

Question Number	Acceptable Answers	Reject	Mark
19(d)	Similarity Both molecules will have (alcohol) $0-H$ peaks in the range 3750-3200 cm^{-1} Difference Only lactic acid will have a (carboxylic acid) O-H peak in the range $3300-2500 \mathrm{~cm}^{-1}$ OR Only lactic acid will have a $\mathrm{C}=\mathrm{O}$ peak in the range $1725-1700 \mathrm{~cm}^{-1}$ ALLOW carboxylic acid for $\mathrm{C}=\mathrm{O}$ If no other mark is scored, one mark may be awarded for Both molecules will have (alcohol) $\mathrm{O}-\mathrm{H}$ and only lactic acid will have a $\mathrm{C}=\mathrm{O}$ / carboxylic acid $\mathrm{O}-\mathrm{H}$ OR Both molecules will have peaks in the range 3750$3200 \mathrm{~cm}^{-1}$ and only lactic acid will have a peak in the range $3300-2500 \mathrm{~cm}^{-1} / 1725-1700 \mathrm{~cm}^{-1}$ IGNORE Reference to $\mathrm{C}-\mathrm{H}$ peaks		(2)

Question Number	Acceptable Answers	Reject	Mark	
20		(6)		
		(1)		

Section C

Question Number	Acceptable Answers	Reject	Mark
*21(a)	MP1 Name the force London / dispersion ALLOW van der Waals forces MP2 Describe the force	Other intermolecular forces Covalent / ionic bonds	(3)
	A temporary / instantaneous dipole forms which induces a dipole in a neighbouring molecule ALLOW instantaneous / temporary dipole-induced dipole forces	(1)	
MP3 Further information about the formation or nature of the interaction Random movement of electrons results in a (temporary) dipole ALLOW The opposite charges of the two (temporary) dipoles mutually attract (1) IGNORE Just 'random movement of electrons produces London forces'			

Question Number	Acceptable Answers	Reject	Mark		
21(b)	Method 1 Ion-dipole interaction OR Delocalised carboxylate ion (dipole must be shown) ALLOW Co-ordination numbers >1 Any $\mathrm{O}^{-}\\| \\| \mathrm{H}-\mathrm{O}$ bond angle Method 2 (ALLOW) Hydrogen bonding (between H of water molecule(s) and O^{-}/ carbonyl oxygen) (1) OR Do not penalise omission of $\delta+$ and δ - in the hydrogen bond IGNORE Diagrams involving water and Na^{+}ions	Dipole-dipole forces Carbonyl oxygen Carboxylate oxygen without a full negative charge Dipole-dipole forces Carboxylate oxygen without a full negative charge non-linear $\mathrm{O}-\mathrm{H}-\mathrm{O}$ for H bond	(2)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i)}$	MP1 Comparison of London forces in ethanoic acid stearic acid e.g. London forces between ethanoic acid molecules are weak but those between stearic acid molecules are strong ALLOW		(2)
	More London forces in stearic acid MP2 Comparison of hydrogen bonds and London Forces Formation of acid-water hydrogen bonds compensates for the breaking of London forces in ethanoic acid but not in stearic acid ALLOW The London forces in stearic acid are stronger than the hydrogen bonds (with water) Both acids form hydrogen bonds with water	Ethanoic acid has more/ stronger H bonds than stearic acid	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (c) (i i)}$	$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$		(1)
OR			
	$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ ALLOW Non-reversible arrow		

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 1 (c) (i i i)}$	$K_{\mathrm{a}}=\frac{\left[\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}^{-}(\mathrm{aq})\right] \times\left[\mathrm{H}^{+}(\mathrm{aq})\right]}{\left[\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}(\mathrm{aq})\right]}$				
OR					
$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ for $\mathrm{H}^{+}(\mathrm{aq})$					
ALLOW					
$K_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}(\mathrm{aq})\right] \times\left[\mathrm{H}^{+}(\mathrm{aq})\right]}{[\mathrm{HA}]}$				\quad	(1)
:---					
IGNORE absence of state symbols in this part No TE on equation that is not the ionisation of a weak acid					

Question Number	Acceptable Answers	Reject	Mark
21(c)(iv)	No TE on 21(c)(iii) $\begin{equation*} M_{r}\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}\right)=284 \tag{1} \end{equation*}$ Concentration of saturated stearic acid solution at $\begin{align*} 25^{\circ} \mathrm{C}=0.34 / & 284 \\ & =1.1972 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \tag{1} \end{align*}$ $K_{\mathrm{a}}=10^{-4.89}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2} /\left[\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}(\mathrm{aq})\right]$ $1.2882 \times 10^{-5}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2} / 1.1972 \times 10^{-3}$ $\begin{equation*} \left[\mathrm{H}^{+}(\mathrm{aq})\right]=\int\left(1.5423 \times 10^{-8}\right) \tag{1} \end{equation*}$ $=1.2419 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ $\begin{equation*} \mathrm{pH}=3.9059=3.91 / 3.9 \tag{1} \end{equation*}$ TE at each stage Correct answer with no working scores (2) If $\left[\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}(\mathrm{aq})\right]=0.34$ used $\mathrm{pH}=2.68 / 2.7 \text { scores }(2)$ IGNORE SF but do not allow $\mathrm{pH}=4$ and do penalise incorrect final answer due to incorrect rounding		(4)

Question Number	Acceptable Answers	Reject	Mark
21(c)(v)	MP1 calculation $\begin{aligned} & \left(\left[\mathrm{OH}^{-}\right]=1.1972 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \mathrm{pH}=14-\log \left(1.1972 \times 10^{-3}\right) \\ & \quad=11.1 \end{aligned}$ TE on concentration of stearic acid in (c)(iv) Correct answer with no working scores (1) MP2 and MP3 graph - Start at pH 10.6-11.4 - Vertical section at $25 \mathrm{~cm}^{3}$ - Curve approaching pH 4 (4.4-3.6) at 40 cm^{3} TE on pH calculation for the start and finish pH values All three points correct scores (2) Any two points correct scores (1) IGNORE pH of equivalence point If alkali added pH 4.4 - 3.6 and vertical section at $25 \mathrm{~cm}^{3}$ and final $\mathrm{pH}=10.6-11.4$ scores (1) (out of (2))	pH rising after start line not asymptotic	(3)

Question Number	Acceptable Answers	Reject	Mark
21(d) Alternative	ALLOW Lattice dissociation enthalpy for -LE All three energy / enthalpy changes by name or symbol scores (2) Two energy / enthalpy changes scores (1) $\begin{equation} \Delta H_{\text {sol }}=(\Sigma) \Delta H_{\text {hyd }}-L E \tag{1} \end{equation*}$ No TE on incorrect cycle If $\Delta H_{\text {sol }}$ is exothermic OR has a small endothermic value, CaX_{2} is more likely to be soluble OR Calcium stearate must have more exothermic LE or less exothermic $\Delta H_{\text {hyd }}$ than calcium alkylbenzene sulphonate (or both) OR Reverse arguments	(+)LE	(4)

