Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced
Subsidiary Level
In Chemistry (WCH11)
Paper 1 Structure, Bonding and Introduction to
Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code WCH11_01_2010_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A

Question number	Answer	Mark
$\mathbf{1}$	The only correct answer is B $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$	(1)
	A is incorrect because this is the molecular formula	
C is incorrect because this is a ratio based on one atom of carbon		
D is incorrect because this is the general formula of an alkane		

Question number	Answer	Mark
$\mathbf{2 (a)}$	The only correct answer is B (displacement)	(1)
	A is incorrect because addition usually refers to organic reactions D is incorrect because no acids or bases are involved Dincorre because substitution usually refers to organic reactions	

Question number	Answer	Mark
$\mathbf{2 ~ (b) ~}$	The only correct answer is $\mathrm{D}\left(\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}\right)$	(1)
	A is incorrect because Cu^{+}is not formed B is incorrect because Cu^{+}is not a reactant C is incorrect because Zn^{+}is not formed	

Question number	Answer	Mark
$\mathbf{3}$	The only correct answer is $\mathrm{C}\left(9.46 \times 10^{23}\right)$	(1)
	A is incorrect because the M_{r} has been divided by the mass $\mathrm{B} \quad$ is incorrect because this would be correct for CO_{2} is incorrect because this is the number of atoms	

Question number	Answer	Mark
4	The only correct answer is $\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}\right)$	(1)
	$\mathrm{A} \quad$ is incorrect because the M_{r} is 83 B is incorrect because the ratio of C and H is not the same D is incorrect because this is rounding number of moles to 1 SF	

Question number	Answer	Mark
5	The only correct answer is B (barium chloride is a compound)	(1)
	A is incorrect because barium chloride is ionic D is incorrect because this is not the simplest ratio	

Question number	Answer	Mark
6(a)	The only correct answer is C (63.6)	(1)
	As incorrect as this is the answer when the abundance of the single charge peaks are used but are divided by 100 D is incorrect because this is the average of the mass of all the ions with the abundancies not considered abundancies not considered	

Question number	Answer	Mark
$\mathbf{6 (b)}$	The only correct answer is $\mathrm{C}\left({ }^{65} \mathrm{Cu}^{2+}\right)$	(1)
	A is incorrect because sulphur would not produce the rest of the peaks	
B is incorrect because this is the peak at 31.5		
D \quad is incorrect because this would give a peak at 32.7		

Question number	Answer	Mark
$\mathbf{7}$	The only correct answer is $\mathrm{B}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)$	(1)
	A \quad is incorrect because this is the empirical formula	
C	is incorrect because there are two extra hydrogens in the formula	
D \quad is incorrect because there are four extra hydrogens in the formula		

Question number	Answer	Mark
8(a)	The only correct answer is $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}\right)$	(1)
	is incorrect because this precedes the first molecule in the sequence $B \quad$ is incorrect because this is not in this sequence D is incorrect because this is the sixth molecule in the sequence	

Question number	Answer	Mark
8(b)	The only correct answer is B (homologous series)	(1)
	A is incorrect because this structure is within each of the molecules D iscorrect because homolytic is a type of bond breaking	

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is $\mathrm{C}\left(\mathrm{Ti}^{2+}\right)$	(1)
	is incorrect because K^{+}has the electronic structure shown B is incorrect because Ca^{2+} has the electronic structure shown is incorrect because SC^{3+} has the electronic structure shown	

Question number	Answer	Mark
10	The only correct answer is $D\left(1 s^{2} 2 s^{2} 2 p^{6}\right)$ A is incorrect because this would be for losing three electrons B is incorrect because this would be for the nitrogen atom C is incorrect because this would be for gaining one electron	(1)
Question number	Answer	Mark
11	The only correct answer is $\mathrm{A}\left(\mathrm{Al}^{3+}\right)(53 \mathrm{pm})$ B is incorrect because Ga is below Al in the Periodic Table so has more shells of electrons (62 pm) C is incorrect because Mg^{2+} has fewer protons than $\mathrm{Al}^{3+}(72 \mathrm{pm})$ D is incorrect because F^{-}has fewer protons than $\mathrm{Al}^{{ }^{3+}}(133 \mathrm{pm})$	(1)

Question number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is B (17.6%)	(1)
	A incorrect because the mass of hydrogen has been divided by the total mass of reactants and products C is incorrect because the mass of hydrogen has been divided by the mass of carbon monoxide D is incorrect because this is the atom economy for carbon monoxide	

Question number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is C (two)	(1)
	A is incorrect because the four unbonded electrons on sulfur form two lone pairs	
B is incorrect because the four unbonded electrons on sulfur form two lone pairs		
Dis incorrect because the four unbonded electrons on sulfur form two lone pairs		

Question number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is $\mathrm{A}\left(\mathrm{J}^{2+}(\mathrm{g}) \rightarrow \mathrm{J}^{3+}(\mathrm{g})+\mathrm{e}^{-}\right)$	(1)
	$\mathrm{B} \quad$ is incorrect because this is the fourth ionisation energy	
$C \quad$ is incorrect because the equation is unbalanced and begins with the uncharged atom		
D	is incorrect because it begins with the uncharged atom	

Question number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is $\mathrm{A}\left(\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CH}_{4}\right)$	(1)
	B is incorrect because the bond angle in methane is larger than that in ammonia C is incorrect because this is the order of increasing bond angle D is incorrect because the bond angle in beryllium chloride is bigger than that in ammonia	

Question number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is $\mathrm{A}\left(\mathrm{Li}^{+}\right.$and $\left.\mathrm{I}^{-}\right)$	(1)
	B \quad is incorrect because the positive ion is larger and the negative ion is smaller than Lil	
C	is incorrect because the positive ion is larger and the negative ion is smaller than Lil	
D	is incorrect because the positive ion is larger and the negative ion is smaller than Lil	

Question number	Answer	Mark
$\mathbf{1 7}$	The only correct answer is D (
	A is incorrect because the bonding is not ionic B is incorrect because the electron density would not form this shape C is incorrect because the molecule is not symmetrical	

Total for Section A = 20 marks

Section B

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& Answer \& \& Additional guidance \& Mark \\
\hline 18(a) \& \begin{tabular}{l}
A statement that makes reference to the following points: \\
- a region within an atom \\
- can hold (up to) two electrons (with opposing spins) or where there is a high probability of finding an electron
\end{tabular} \& (1)

(1) \& | Allow A region around the nucleus Allow area/place/space for region Ignore path/track/orbiting Do not award in the nucleus |
| :--- |
| Allow a percentage between 90 and 95 Allow a greater chance of finding / most likely to find |
| Do not award just likely |
| Marks are standalone | \& (2)

\hline
\end{tabular}

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 8 (b)}$	- s-orbitals are spherical / ball shaped and p-orbitals are dumbbell shaped	IGNORE the words circular or figure of eight or pear shaped	(1)
		Accept labelled diagrams e.g.	

Question Number	Answer	Additional guidance	Mark
18(c)	A description that makes reference to: - three (quantum) shells - 2, 8, 1 - Indication of which electrons are in which (quantum) shell	Accept energy levels Accept the numbers in the reverse order Allow descriptions of the large jumps between IE1 \& IE2 and IE9 \& IE10 e.g. - It has one electron in its outermost shell or - First electron removed is in the third shell / 3s or - 8 electrons in $2^{\text {nd }}$ quantum shell or - Two electrons are on the innermost shell Allow one electron in valence shell Ignore one valence electron Ignore spd notation	(3)

Question Number	Answer	Additional guidance	Mark
18(d)(i)	- axes correct way round and both suitably labelled - suitable choice of linear scale so that the points cover at least 50% of the grid in both directions - all 5 points plotted correctly	Example of a graph: Do not award log as an axis label Ignore units and brackets on the y-axis Accept atomic numbers on the x-axis Allow element symbols Al to 0 Allow MP3 for bar charts Allow half square tolerance on plotted points Ignore any lines joining the points	(3)

Question Number	Answer	Additional guidance	Mark
18(d)(ii)	- $\left(10^{(3.99)}=\right) 9772\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	Accept answers given in standard form Accept answers given in the grid for (d)(i) Allow 9544 - $10000\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ TE from graph in 18(d)(i) Allow any SF Ignore units even if incorrect	(1)

| Question
 Number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| 18(d)(iii) | The fourth electron is removed from the same / second (quantum) shell | Allow both electrons are removed from 2p
 orbitals / the 2p subshell
 Allow same energy level
 Do not award same electronic structure /
 same orbital in place of same shell
 lgnore shielding
 lgnore nuclear charge
 lgnore references to electron pairs repelling |

(Total for Question 18 = 11 marks)

| Question
 Number | Answer | Additional guidance |
| :--- | :---: | :--- | :--- |
| $\mathbf{1 9 (a) (i)}$ | $\bullet\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3}$ | Mark |
| | | 1 mark for $\mathrm{Cr}_{2} \mathrm{O}_{3}$
 1 mark for all the rest being correct
 Allow multiples
 Marks are standalone |
| | | |

Question Number	Answer	Additional guidance	Mark
19(a)(ii)	(thermal) decomposition or redox	Ignore oxidation or reduction on their own	(1)

Question Number	Answer		Additional guidance	Mark
19(b)	- conversion of units for P and V - substitution in equation and rearrange	(1)	Example of calculation: $\begin{aligned} & P=101000 / 1.01 \times 10^{5} \mathrm{~Pa} \\ & V=0.0000252 / 2.52 \times 10^{-5} \mathrm{~m}^{3} \end{aligned}$ Allow incorrect use standard form e.g. $10.1 \times 10^{4} \mathrm{~Pa}$	(4)
		(1)	$T=\frac{101000 \times 0.0000252}{0.001 \times 8.31}$	
	- answer in K	(1)	$T=306.28(\mathrm{~K})$	
	- convert to ${ }^{\circ} \mathrm{C}$	(1)	$T=33.3\left({ }^{\circ} \mathrm{C}\right)\left(33.1^{\circ} \mathrm{C}\right.$ if 273.15 is used for conversion of kelvin to Celsius)	
			Ignore SF except 1 SF on final answer	
			TE throughout but only award for MP4 if final answer in ${ }^{\circ} \mathrm{C}$ is between 0 and $50^{\circ} \mathrm{C}$	
			Units if given must be correct	
			Comment:	
			Correct answer with no working scores 4 306.28(K) scores 3 $30.85{ }^{\circ} \mathrm{C}$ scores 3	
			$33.7^{\circ} \mathrm{C}$ scores 3 as they have used R as 8.3 33.55° C scores 3 using 8.3 and 273.15	
			306.7K scores 2 as they have used R as 8.3	

Question Number	Answer	Additional guidance	Mark
19(c)(i)	A drawing that shows: - four pairs of electrons and 4 hydrogen atoms around nitrogen - one dative covalent bond and plus sign	Allow answers without brackets Allow use of any symbol for the electrons as long as it is clear which is the dative covalent bond (e.g. by use of an arrow) Ignore placement of positive sign	(2)

Question Number	Answer	Additional guidance		
19(c)(ii)	An explanation that makes reference to: \bullet tetrahedral / tetrahedron (1)	MP1 may be scored with a 3D diagram or an answer given in 19(c)(i) Allow phonetic spelling		
(four) pairs of electrons arranged in position of minimum				
repulsion / maximum separation (1)			\quad	Allow equal repulsion of electron-pairs
:---				
Allow reference to bonding pairs				
Ignore reference to bonds				
lgnore all bond angles				
Do not award references to lone pairs				
Marks are standalone				

Question Number	Answer	Additional guidance	Mark
19(d)(ii)	An answer containing an appropriate suggestion: - dichromate/oxidising agents promote(s) combustion/burning of alkanes/fuels OR alkanes are flammable/combustible and dichromate is an oxidising agent	Allow fuels/alkanes would catch fire more easily Ignore dichromate causes alkanes to burn Do not award dichromate catches fire	(1)

Question Number	Answer		Additional guidance	Mark
20(a)(i)	A balanced equation: - repeat unit of polypropene including extension bonds through the brackets - all the rest of the equation	(1) (1)	Example of equation: Accept fully displayed and hybrid formulae Do not award skeletal formulae Allow the n anywhere on the LHS of the monomer Do not award MP1 is the n is before the brackets for the polymer Do not award if n is superscript on the RHS MP2 can be awarded if a different alkene monomer is used (and all is correct) Ignore vertical connectivity errors Penalise the omission of missing H atoms once only	(2)

Question Number	Answer	Additional guidance	Mark
20(a)(ii)	An answer that makes reference to any one from: - no small molecule / water is made making poly(propene) - a small molecule / water is made making PLA - Poly(propene) is an addition polymer - PLA is a condensation polymer	Accept reverse argument Allow polymerisation of propene has a higher atom economy Allow polymerisation of lactic acid produces two products / polymerisation of propene only produces one Ignore propene contains $C=C$ Ignore references to biodegradability	(1)

Question Number	Answer	Additional guidance		
20(a)(iii)	can be broken down / degraded / decayed by bacteria / microbes / organisms	Allow can be broken down by decomposers		
Ignore references to soil / environment /				
air				
Ignore breaks down on its own / naturally				
/biologically			\quad	(1)
:---				

Question Number	Answer		Additional guidance	Mark
20(a)(iv)	An answer including any three from: - takes less time than most plastics to break down - reduce waste going to landfill - do not require incineration - reduce pollution / litter / harm to wildlife - break down into non-harmful products OR can be used as fertiliser / biofuel - help conserve crude oil reserves OR (come from a) renewable (resource) OR are more sustainable	(1) (1) (1) (1) (1) (1)	Allow degrade faster / requires less energy Do not award no waste Allow less pollution Do not award no pollution Allow a description of a renewable source Accept reverse arguments throughout Ignore environmentally friendly / global warming / carbon neutral / recycling / toxic gases	(3)

| Question
 Number | Answer | Additional guidance |
| :--- | :---: | :--- | :--- |
| 20(b)(i) | both double bonds in isoprene have two atoms of hydrogen on one
 end / need to have different groups on both ends to form
 geometric isomers | Allow two identical groups / atoms are
 attached to one carbon of the double
 bond |

| Question
 Number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| 20(b))(ii) | A drawing of the other geometric isomer i.e. | Accept displayed formulae and shortened
 structural formulae
 lgnore bond angles as long as Cl is
 opposite the methyl group on the double
 bond |

| Question
 Number | Answer | Additional guidance |
| :--- | :---: | :--- | :--- |
| 20(b))(iii) | - does not allow (free) rotation / restricts rotation (around the C=C | Allow limited instead of restricted
 Allow double bond does not rotate /
 double bond cannot be rotated
 lgnore references to groups attached to
 the C=C bond
 lgnore references to sigma and pi bonds,
 even if incorrect
 Do not award "restricted rotation around
 the molecule" alone |

(Total for Question 20 = 10 marks)

Question Number	Answer		Additional guidance	Mark
21(a)	- mass of 0.0300 moles - volume of 0.0300 moles	(1) (1)	Example of a calculation: Correct answer with no working scores zero TE from M1 to M2 Ignore all units, even if incorrect	(2)

Question Number	Answer	Additional guidance	Mark	
21(b)(i)	An answer that makes reference to the following points: - from brown / red-brown	(1)	Allow red / brown-orange Do not award orange / yellow / brown-yellow - to colourless	(1)
Accept decolourises lgnore clear Correct colours in the reverse order scores (1) Comment: Either brown or colourless alone, without an indication of whether it is the initial or final colour, scores 0	(2)			

Question Number	Answer	Additional guidance	Mark
21(b)(ii)	A mechanism showing: - induced dipole on bromine and 1,2-dibromocyclohexane as the product - two curly arrows (to form intermediate and Br^{-}) - intermediate - curly arrow from lone pair on bromide ion to the trivalent/positive carbon atom of the intermediate	$\delta+$ closer to $C=C$ double bond Allow displayed structures penalise omission of hydrogens once only Double headed arrow from double bond to Br atom with the $\delta+$ and Arrow from $\mathrm{Br}-\mathrm{Br}$ bond to the Br atom or just beyond it + charge shown on trivalent carbon atom Allow all lone pairs to be shown on bromide ion Do not award lines in place of lone pairs Correctly drawn mechanism with ethene (or another alkene) can gain MP2, MP3 and MP4 Penalise single headed arrows once only Example of mechanism: (hydrogen atoms on intermediate may be shown or omitted on skeletal structures)	(4)

Question Number	Answer		Mark
$\mathbf{2 1 (c) (i)}$	parts per million		(1)

Question Number	Answer			Mark
21(c)(ii)	- choice of appropriate safe concentration - correct expression - evaluation	(1) (1) (1)	Example of calculation: (<)1.1 (ppm) Allow 1.0 to 1.1 ppm $\begin{aligned} & 3.25 / \mathrm{V}=1.1 / 10^{6} \\ & \mathrm{~V}=3.25 \times 10^{6} / 1.1 \\ & =2954545\left(\mathrm{~cm}^{3}\right) \end{aligned}$ $=2950 / 2955 / 3000\left(\mathrm{dm}^{3}\right)$ Do not award 2954 / $2960\left(\mathrm{dm}^{3}\right)$ Do not award MP3 for incorrect rounding Ignore SF Allow TE throughout If units are given they must be correct	(3)
Question Number	Answer		Additional guidance	Mark
21(d)	- Mr_{r} of Br_{2} calculated - mass of Br_{2} calculated - volume of water $=$ mass \div concentration	(1) (1) (1)	Example of a calculation: $\mathrm{Mr}_{\mathrm{r}} \mathrm{Br}_{2}=159.8$ $\begin{aligned} & 0.03 \times 159.8=4.794 \mathrm{~g} \\ & v=4.794 \div 35 \\ &=0.137 \mathrm{dm}^{3} / 137 \mathrm{~cm}^{3} \end{aligned}$ Ignore SF except 1 SF Allow TE throughout	(3)

(Total for Question 21 = 15 marks)

Question Number	Answer	Additional guidance	Mark
22(a)	1,1,2-trichloroethane	Do not award 1, 2, 2-trichloroethane	(1)

Question Number	Answer	Additional guidance	Mark
22(b)(i)	uv light OR uv radiation	Allow sunlight Allow uv Do not award "light"	(1)

Question Number	Answer		Additional guidance	Mark
22(b)(ii)	A displayed reaction equation including: - curly half arrows showing the breaking of a bond - the formation of two free radicals (Cl• and one being from molecule X)	(1) (1)	Penalise the omission of the unpaired electron once only in (b)(ii) and (b)(iv) Allow the fission of a bond in isolation for MP1 Allow multiple fissions if all are correct Mark independently or	(2)

Question Number	Answer		Additional guidance	Mark
22(b)(iii)	A reaction equation showing: - a chlorine radical with 1,1,2-trichloroethane - formation of two products	(1) (1)	Example of Equation: $\begin{aligned} & \mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}_{3} \rightarrow \mathrm{HCl}+\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{3}{ }^{-} \\ & \mathrm{Cl}^{\cdot}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}_{3} \rightarrow \mathrm{Cl}_{2}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}_{2}^{\cdot} \end{aligned}$ Ignore further reactions Allow displayed formulae Allow radical dots placed in any location	(2)

Question Number	Answer		Additional guidance	Mark
22(b)(iv)	A reaction equation showing: - displayed formula of any radical with a formula $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}_{2}$ or $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{3} \bullet$ - balanced equation with two radicals and showing the displayed formula of the product	(1) (1)	An example of an equation:	(2)

Question Number	Answer		Additional guidance	Mark
22(b)(v)	An answer that makes reference to the points: - termination reaction - suitably named product that can be derived from X	(1) (1)	Do not award addition reaction i.e. 1,1,2,3,4,4-hexachlorobutane, 1,2,2,3,3,4-hexachlorobutane, or 1,1,2,3,3,4-hexachlorobutane Allow TE name from $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Cl}_{6}$ structure shown in 22(b)(iv)	(2)

