Mark Scheme (Results)

October 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH16)
Paper 01: Practical Skills in Chemistry II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P67132A
Publications Code WCH16_01_2110_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.
Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Question Number	Answer	Additional Guidance	Mark
1(a)(i)	A description that makes reference to the following point: - blue precipitate (forms)	Accept light / pale blue Allow ppt / ppte / solid for precipitate Ignore formulae even if incorrect Do not award mixed colours e.g. blue / green Do not award dark blue / royal blue / navy blue	(1)
Question Number	Answer	Additional Guidance	Mark
1(a)(ii)	- (the initial blue solution goes) green - (this changes to a) yellow (solution)	Allow any shades of colours e.g. bright Ignore formulae even if incorrect Penalise green precipitate or yellow precipitate once only Ignore mention of blue precipitate If no other mark is awarded, allow (1) for green-yellow / yellow-green (solution)	(2)

Question Number	Answer	Additional Guidance	Mark
1(b)	A description that makes reference to the following points: - addition of (dilute) hydrochloric acid $/ \mathrm{HCl}(\mathrm{aq})$ and barium chloride (solution) / $\mathrm{BaCl}_{2}(\mathrm{aq})$	Allow names or formulae of reagents but if both are given, both must be correct Allow $\mathrm{HCl} /$ acidified / H^{+}/ dilute nitric acid / $\mathrm{HNO}_{3}(\mathrm{aq})$ for hydrochloric acid Allow barium nitrate solution / $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ for barium chloride (solution) Ignore concentration of acid Do not award sulfuric acid Conditional on use of barium chloride or barium nitrate with or without any acid Allow ppt / ppte / solid for precipitate Ignore cloudy Ignore incorrect name / formula of precipitate Do not award just 'turns white'	(2)
Question Number	Answer	Additional Guidance	Mark
1(c)(i)	- calculation of E^{\ominus} cell	Example of calculation: $0.77-0.34$ $=(+) 0.43(\mathrm{~V})$ Correct answer with no working scores (1) Do not award -0.43 (V)	(1)

Question Number	Answer	Additional Guidance	Mark
1(c)(ii)	- low voltage supply and replace with (high resistance) voltmeter - (platinum) wire and replace with salt bridge - iron (electrode) and replace with platinum	Penalise additional incorrect changes The mistakes can be in any order Allow potentiometer / Wheatstone bridge Do not award voltameter Allow a description of a salt bridge containing potassium / sodium / ammonium with nitrate / chloride	(3)

Question Number	Answer	Additional Guidance	Mark
(d)(i)	• balanced equation	Example of equation: $\mathrm{Zn}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	(1)
		Allow $\mathrm{Zn}+4 \mathrm{H}^{+}+2 \mathrm{NO}_{3}-\rightarrow \mathrm{Zn}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	
		Allow multiples	
		Ignore state symbols, even if incorrect	
		Do not award equation with copper	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (d) (i i)}$	$\bullet\left(10 \mathrm{~cm}^{3}\right)$ measuring cylinder	Allow $25 \mathrm{~cm}^{3}$ measuring cylinder but no bigger size specified Allow measurement on the side of a beaker Do not award burette $/$ pipette $/$ volumetric flask	(1)

Question Number	Answer	Additional Guidance	Mark
1(d)(iii)	• (when the solution is) straw coloured / pale yellow	Allow near / approaching / just before the end point	(1)
		Ignore at the end point / before the end point	

Question Number	Answer	Additional Guidance	Mark
1(d)(iv)	- calculation of $\mathrm{mol} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ - calculation of mol of Cu^{2+} in $25.0 \mathrm{~cm}^{3}$ - calculation of $\mathrm{mol} \mathrm{Cu}^{2+}$ in $250 \mathrm{~cm}^{3}$ - calculation of mass of Cu - calculation of percentage of copper in brass and answer to $2 / 3 \mathrm{SF}$	Example of calculation: $\mathrm{Mol} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ used $=\frac{28.60 \times 0.100}{1000}$ $\begin{equation*} =0.00286 / 2.86 \times 10^{-3} \tag{1} \end{equation*}$ $(\mathrm{Mol} \mathrm{I} 2$ formed $=0.00143)$ Mol of Cu^{2+} in $25.0 \mathrm{~cm}^{3}=0.00286 / 2.86 \times 10^{-3}$ TE on $\mathrm{mol} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ $\mathrm{Mol} \mathrm{Cu}^{2+}$ in $250 \mathrm{~cm}^{3}=0.00286 \times 10$ $\begin{equation*} =0.0286 / 2.86 \times 10^{-2} \tag{1} \end{equation*}$ TE on $\mathrm{mol} \mathrm{Cu}^{2+}$ in $25.0 \mathrm{~cm}^{3}$ Mass of $\mathrm{Cu}=0.0286 \times 63.5$ $\begin{equation*} =1.8161(\mathrm{~g}) \tag{1} \end{equation*}$ TE on $\mathrm{mol} \mathrm{Cu}^{2+}$ in $250 \mathrm{~cm}^{3}$ Percentage of copper $=\frac{1.8161}{3.90} \times 100=46.567$ $\text { = } 46.6 / 47 \text { (\%) }$ TE on mass Cu unless percentage $>100 \%$ Allow answer to $2 / 3$ SF from earlier correct rounding 1.82 g gives 46.7 / 47(\%) 1.8 g gives 46.2 / 46(\%) Correct answer with no or some working scores (5)	(5)

Question Number	Answer		Additional Guidance	Mark
2(a)(i)	- Test 1: aldehyde or ketone / -CHO or $\mathrm{C}=\mathrm{O}$ - Test 2: aldehyde / - CHO		Allow structural / displayed / skeletal formulae Ignore $\mathrm{COH} / \mathrm{C}=\mathrm{O}$ for aldehyde in M1 and M2 Both needed for the mark Allow carbonyl (compound) Do not award methyl ketone / specific aldehydes and ketones for M1 only	(2)
Question Number	Answer		Additional Guidance	Mark
2(a)(ii)	- copper(I) oxide / $\mathrm{Cu}_{2} \mathrm{O}$		If name and formula given, both must be correct Ignore copper oxide / Cu^{+}	(1)
Question Number	Answer		Additional Guidance	Mark
2(b)(i)	- $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+} / \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$ or CHO^{+}		Penalise additional incorrect formulae Accept brackets around the formulae Allow charge anywhere on the ion Allow symbols in any order e.g. $\mathrm{H}_{5} \mathrm{C}_{2}{ }^{+} / \mathrm{COH}^{+}$ Do not award bond from formula e.g. $-\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}$ Symbols and the charge are needed	(1)

Question Number	Answer		Additional Guidance	Mark
2(b)(ii)	- m / z value $=58$ and structure of propanal		Example of structure: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ Allow any combination of structural and displayed formula / skeletal formula Ignore $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COH}$	(1)
Question Number	Answer		Additional Guidance	Mark
2(c)(i)	- Test 3: blue - Test 4: amine	(1) (1)	Allow blue-green / dark green / purple Ignore indigo / violet / mauve Allow amino Ignore classification of amine Do not award ammine / amide	(2)
Question Number	Answer		Additional Guidance	Mark
2(c)(ii)	- structure of B		Example of structure: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3} /$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2} /\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ Allow any combination of structural and displayed formula / skeletal formula	(1)

Question Number	Answer	Additional Guidance	Mark
3(a)	-polystyrene / it is a better / good insulator or reduces / minimises heat loss (to the surroundings) or cup has a low heat capacity	Allow description of insulation Allow glass is a poor insulator Ignore reference to polystyrene does not break Ignore prevents / no heat loss Do not award low specific heat capacity	(1)

Question Number	Answer	Additional Guidance	Mark
3(b)	- calculation of heat produced - calculation of moles of LiCl - calculation of enthalpy change and sign and units	Example of calculation: Heat produced $=25.0 \times 4.18 \times 12.5$ $=1306.25(\mathrm{~J}) / 1.30625(\mathrm{~kJ})$ Ignore sign Moles of $\mathrm{LiCl}=$ $\frac{2.12}{6.9+35.5}=0.0500 / 5.00 \times 10^{-2}(\mathrm{~mol})$ Allow 0.05 / 0.04988 (from 7 for Li) Enthalpy change $=-\frac{1306.25}{0.0500}=-26125 \mathrm{~J} \mathrm{~mol}^{-1}$ $\text { Or }-\frac{1.30625}{0.0500}=-26.125 \mathrm{~kJ} \mathrm{~mol}^{-1}$ TE on heat produced and moles LiCl Ignore SF except 1 SF Allow answer from earlier correct rounding to at least 2 SF e.g. $-26.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ from 1.31 kJ Correct answer with sign and units and no working scores (3)	(3)

Question Number	Answer	Additional Guidance	Mark
3(c)	• calculation of percentage uncertainty	$\frac{\text { Example of calculation: }}{12.5} \times 100=(\pm) 4(\%)$	(1)
		Correct answer with no working scores (1)	

Question Number	Answer		Additional Guidance	Mark
3(d)	A description that makes reference to the following points: - (start a stop watch / clock and) measure the temperature of the water every 30 s for $21 / 2$ minutes - add the lithium chloride at exactly 3 min - (stir and) record the temperature every 30 s for another 5 minutes - plot a graph of temperature against time - (join the two sets of points with 2 best fit straight lines and) extrapolate the lines to the time of mixing and determine the maximum temperature change / rise at that time	(1) (1) (1) (1) (1)	Allow any reasonable specified times / time intervals in M1, M2 and M3 Ignore any other changes to the apparatus Allow idea of more than one reading to stabilise temperature Allow use of a lid / additional insulation Allow start stop watch when LiCl is added Stand alone mark for idea of record / measure temperature at regular time intervals Do not award if time is on y axis Allow an annotated sketch graph for M4 and M5 Do not award graph that shows extrapolated lines with temperature increasing then decreasing e.g.	(5)

(Total for Question 3 = 10 marks)

Question Number	Answer		Additional Guidance	Mark
4(a)	- error: (conical) flask correction: change to pear-shaped flask - error: thermometer should not be in the reaction mixture / liquid / flask correction: thermometer (bulb) should be level with entrance / opening to condenser - error: apparatus should not be sealed / there would be a build-up of pressure correction: EITHER remove stopper from boiling tube / test tube OR use a bend with a vent / collection tube with side arm	(1) (1) (1)	If the error is omitted but the correction clearly indicates the error, then award the mark e.g removing the stopper implies what the error was Allow errors and corrections shown on diagram Penalise additional incorrect errors e.g. water wrong way in condenser once only Allow change to round-bottomed flask Allow move thermometer bulb until level with entrance to condenser Ignore just' thermometer should be higher' / 'near to the top' unless shown where on diagram Do not award thermometer at neck of flask Allow replace sealed test tube with beaker / measuring cylinder/ unstoppered container Ignore just 'change test tube to flask' unless mention of open / no bung	(3)

Question Number	Answer	Additional Guidance	Mark
4(c)(i)	- balanced equation	Examples of equation: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NaCl}$ Or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Na}^{+}$ Or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ Or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Cl}^{-}$ Allow multiples Allow displayed / skeletal formulae / combination of structural, displayed and skeletal formulae for organic reactant / product Ignore molecular formulae for organic reactant / product Ignore state symbols even if incorrect Ignore reversible arrow Do not award $-\mathrm{O}-\mathrm{Na}$ in reactant	(1)

Question Number	Answer	Additional Guidance	Mark
4(c)(ii)	- filter (under reduced pressure)	Penalise mention of hot filtration Allow any other type of filtration e.g. suction filtration Allow description of filtration using any type of funnel (except separating funnel) and filter paper Allow diagram of filtration	(1)
		Ignore decanting / rinsing / drying	

Question Number	Answer	Additional Guidance	Mark
4(d)	- dissolve the benzoic acid / solid / crystals and in the minimum amount / volume and of boiling / hot water	Allow mix / add / form a (saturated) solution for dissolve Allow solvent for water Allow small amount / volume Ignore missing amount / volume Do not award incorrect solvent e.g. ethanol	(1)
Question Number	Answer	Additional Guidance	Mark
4(e)	An answer that makes reference to the following points: - (melting temperature / it) is lower - (it melts over) a range of temperatures / (the melting temperature / it) is not sharp	Penalise mention of boiling temperature / distillation once only	(2)

Question Number	Answer	Additional Guidance	Mark
4(f)(i)	\bullet (alkyl group is) $\mathrm{C}_{4} \mathrm{H}_{9}$	Allow structural / displayed formula for any $\mathrm{C}_{4} \mathrm{H}_{9}$ group Ignore working Do not award $\mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}$	(1)

Question Number	Answer	Additional Guidance	Mark
4(f)(ii)	- four alcohols with formula	Examples of alcohols:	(2)
		Alcohols can be in any order Allow any combination of structural / displayed formulae / skeletal formulae	
		Allow (1) for any two or three alcohols correct	
		Allow (1) for at least two alcohols as TE from R group in (f)(i)	
		Penalise missing H once only	
		Penalise incorrect connectivity of horizontal OH groups once only e.g. $\mathrm{OH}-\mathrm{C}$ on left	
		Penalise omission of OH once only i.e. 4 correct carbon skeletons for R scores (1)	

Question Number	Answer		Additional Guidance	Mark
4(f)(iii)	- structure of any butyl benzoate - tertiary butyl R group	(1) (1)	Example of structure: Allow any combination of structural / displayed formulae / skeletal formula Allow (1) for structure as TE from R group in (f)(i) Allow another mark if the R group would give 2 peaks on ${ }^{13} \mathrm{C}$ NMR spectrum	(2)

(Total for Question 4 = 15 marks)

