Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel GCSE In Physics (1PH0) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:www.pearson.com/uk

November 2021
Publications Code 1PHO_2H_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.
Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.
When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*	An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2	An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1a and $1 b$	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and $2 b$		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Question number	Answer	Additional guidance	Mark
1 (a) (i)	use friction (1)	rub (the plastic rod)	(1) AO1

Question number	Answer	Additional guidance	Mark
$\mathbf{1}$ (a) (ii)	C		(1) AO1
	A and B are incorrect because the cap would become charged D is incorrect because the cap would have an opposite charge to that on the rod		

Question number	Answer	Additional guidance	Mark		
$\mathbf{1}($ b)	An explanation linking:	(2) negative charges move reject positive electrons for this mark	AO1		
	with one from: (leaf and/or rod) have been discharged (1) (gold leaf) is no longer repelled (1)	to the earth		\quad	
:---					

Question number	Answer	Additional guidance	Mark
$\mathbf{1}$ (c) (i)	(size of) charge on Q is greater than (size of charge) on P (1)	Q has more charge / stronger field than P	AO3
	P has (overall) negative charge and Q has (overall) positive charge (1)	accept abbreviations such as +'ve, -'ve	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (c) (i i)}$	(force of) attraction on (object) P from (object) Q (1)		(1) AO1

Question number	Answer	Additional guidance	Mark
$\mathbf{8 c (i) (F)}$	A description including		(2) 2(ai)(H)
as the potential difference (voltage) increases so does the current (1) idea of gradient of graph decreasing as V increases (1)	positive correlation at a decreasing rate non-linear not directly proportional		

Question number	Answer			Additional guidance	Mark
8(c)(ii)(F)	Award one mark for each row of the table			ignore any units added in the boxes	(2)
2(aii)(H)		voltage in V	current in mA		
	point P	1(.00)	20		
	point Q	3.4 ± 0.1	43 ± 1		

Question number	Answer	Additional guidance	Mark
8(c)(iii)(F)	substitution (1)		(2) AO2 $(R=) \frac{4.5}{51\left(\times 10^{-3}\right)}$
	evaluation (1) (H) $88 .(2)(\Omega)$ or 0.88(2) or 0.09 seen scores 1 mark	0.088(2) k Ω or 0.09 k Ω scores 2 marks	
		award full marks for correct answer without working	

Question number	Answer	Additional guidance	Mark
8(c)(iv)(F)	an explanation linking any three of:		(3) AO1
	identification of resistance (H) increasing (1) heating (of the filament) (1) because of more collisions (1)	temperature increases	of electrons (with ions / atoms / other electrons) (1)

Total 9 marks

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (a) (F)}$	descriptions to include any two of	(2) 3(a)(H)	particles / atoms in solid close(r) together (1)
reverse argument	difference asked for so must compare for subsequent marking points		
particles / atoms in solid (vibrate) in fixed positions but particles in liquid move (freely) (1)	particles in a solid in regular arrangement but particles in liquid are randomly arranged (1)	particles in a liquid have more (kinetic) energy (than in a solid) (1)	allow answers in terms of forces between particles

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & \text { 9(b)(F) } \\ & 3(b)(H) \end{aligned}$	```volume substitution (1) 1.5 x 1.0 x 0.2(0)(=0.3) substitution in equation (1) mass = 2100 x (0.3(0)) evaluation (1) = 630(kg)```	ecf from calculated value of volume for this mark only award 2 marks for $6.3 \times$ any other power of 10 5670 gains 1 mark from use of $1.5+1.0+0.2=2.7$ award full marks for correct answer without working	$\begin{aligned} & \hline \text { (3) } \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & 9(C)(F) \\ & 3(C)(H) \end{aligned}$	statements to include any two from use cladding / (extra) insulation (1) use double thicknesses of the concrete (1) use silver / reflective / white (paint) plant trees around (wind break) (1) use double glazed windows (1) (properly) close window(s)/door	create cavity draft exclusion	$\begin{aligned} & \text { (2) } \\ & \text { AO1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{3}(\mathrm{d})$	269 (K)	allow use of 273.14? $269.14(\mathrm{~K})$	(1) AO2

Question number	Answer	Additional guidance	Mark
4 (H) $\mathbf{1 0 (F)}$ (ai)	recall (1) $P=\frac{F}{A}$ substitution (1) (p) $=\frac{2400}{0.8}$ evaluation (Pa) (P) = 3000 (Pa) (1)	may be implied by a correct substitution	(3) AO2
		award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
4 (H) 10(F) (aii)	an explanation linking greater pressure (on bottom of tank) (1)		(2) AO1
	with greater force due to water (above bottom of tank) (1)	more weight of water more depth/height of water ignore simply 'more water' or 'greater amount of water'	

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & 10 \text { aiii } \\ & \text { (F) } \end{aligned}$			$\begin{aligned} & \hline \text { (1) } \\ & \text { AO1 } \end{aligned}$
4(aiii) (H)	an arrow perpendicular to the sloping side and pointing towards X	judge by eye	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0}$ bi (F) data points correctly identified award 1 mark if 80 4 bi (H) and 50 seen (2) 50 ± 2 AO3 80 ± 2 ignore the lack of minus sign evaluation (1) allow ecf from incorrect reading of either pressure at 2000m or pressure at 6000 m for one mark			

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0}$ bii $\mathbf{(F)}$ $\mathbf{4}$ bii (H)	any one suggestion of	accept reverse argument greater density of atmosphere (1) more particles (per cubic metre) the air gets thicker	(1) AO1
	greater depth of atmosphere (above the aeroplane) (1) greater temperature (of the atmosphere) (1)	greater weight of the atmosphere	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 ~ (c)}$	an explanation linking	accept reverse arguments	(2) $\mathbf{4}$ (c) (H)
AO2 the area (of contact between person and bed) is smaller when standing up (1)	weight is more concentrated / not distributed /not spread across bed (when standing up)		
same weight (over smaller area) so the pressure is greater when standing up (1)	uses p = F/A argument (as a consequence of the smaller area, pressure is bigger)		

Total for question 4(h), 10(F) = 11 marks

Question number	Answer	Additional guidance	Mark
5 (a)(i)	example: rectangles in (approximately) correct position (1) all four poles correctly labelled (1)	judge by eye but do not allow rectangles in contact	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO3 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
5 (a)(ii)	a description to include place a (plotting) compass on the paper (near to the magnet(s)) and mark direction of the field (at that point) (1) determine how the field continues from that point (1) connect field lines to reveal overall shape(1)	place a (plotting) compass on the paper (near to the magnet(s)) and put a dot at each end of the needle move compass so that one end of the needle is over the mark (just made) join up the dots	$\begin{aligned} & \text { (3) } \\ & \text { AO1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
5 (b) (i)	substitution of values (1) $1.2=\frac{K}{4(.0)^{2}}$	allow rearrangment before substitution $(\mathrm{K}=) 1.2 \times 4(.0)^{2}$	(3) rearrangement and evaluation (1)
	$(\mathrm{K}=) 19$	19.2 0.00192 award full marks for the correct answer without working independent mark	
	unit (1)	N m²	
	N cm ${ }^{2}$		

Question number	Answer	Additional guidance	Mark
$\mathbf{5}$ (b)(ii)	same magnitude and opposite direction (1)	allow (now) attraction for opposite direction	(1) AO1

Question number	Answer	Additional guidance	Mark
$\mathbf{6}$ a	(sum of) the clockwise moments = (sum of) the anticlockwise moments	moment of magnet $=$ moment of modelling clay moments are equal (size)	(1) AO1

Question number	Answer	Additional guidance	Mark
$\mathbf{6}$ b	recall and substitution (1)	allow substitution and rearrangement in either order	(3) AO2
	rearce $\times 12.0=$ =) 0.050×8.4		
	(force =) $\frac{0.050 \times 8.4}{12.0}$	evaluation (1) (force $=$) $0.035(\mathrm{~N})$ the correct answer without working.	if no other marks scored then award 1 mark for answers that round to 29 (eg 28.57) (substitution mark)

Question number	Answer	Additional guidance	Mark
$\mathbf{6}$ c	a description to include four of the following measure the value of current (1) measure force or distance(1) vary the current (1) restore equilibrium of system (1)	accept calculate for measure increase weight or move (existing) weight to new position plot a graph of force / distance against current graph would be a straight line (through the origin)	AO3
calculate ratio between force and current or distance and current (1) if ratio is the same then they are proportional (1)			

Question number	Answer	Additional guidance	Mark
$\mathbf{6 ~ d}$	move the (position of) the $(0.050$ N) weight (1) to the other side of the pivot/3.6 cm from the magnet (1)	adjust mass of modelling clay	(2) reduce (mass of modelling clay) by taking some away

Total for question $6 \mathbf{= 1 0}$ marks

Question number	Answer	Additional guidance	Mark
$\mathbf{7}$ (a) (i)	D R and S	(1) AO1 B and C are incorrect because the difference in vertical positions are all less than that shown by R and S	

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (a) (i i)}$	recall (1) work done = force x distance substitution and evaluation (1)	(work done) $=700 \times$ 20	(2) AO1
	(work done =) 14,000 (J)	award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
7 (a)(iii)	```substitution (1) \(11250=m \times 10 \times 15\) rearrangement and evaluation (1) (mass=) \(75(\mathrm{~kg})\)```	award full marks for the correct answer without working. if no other marks scored then award 1 mark for answers of 0.013 (substitution mark using $\mathrm{h}=15$)	$\begin{aligned} & \hline(2) \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark		
$\mathbf{7 (a) (i v)}$	An explanation linking		(2) AO1		
	some work is done to overcome friction/air resistance (1) energy is dissipated /transferred to the environment (1)	allow energy is lost		\quad thermal energy	
:---					

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (a) (v)}$	C increase the efficiency of the cyclist and bicycle	(1) AO1	
	A is incorrect because lubrication has no effect on work done against gravity B is incorrect because lubrication will increase efficiency D is incorrect because the overall energy transfer will not increase		

Question number	Answer	Additional guidance	Mark
7 (b)	substitution (1) $2,800=1 / 2 \times 85 \times v^{2}$ rearrangement (1) $\left(v^{2}=\right) \frac{2800 \times 2}{85}$ evaluation (1) $\mathrm{v}=8.1(\mathrm{~m} / \mathrm{s})$	allow substitution and rearrangement in either order 66 or 65.88 seen allow values that round to 8.1 e.g 8.1168 award full marks for the correct answer without working	$\begin{aligned} & \text { (3) } \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (a)}$ (i)	voltmeter connected in parallel with device (1)	voltmeter connected in parallel with battery may be in top or with device (1) bottom of circuit and could be inside or outside the voltmeter connections	(2) AO1

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (a) \text { (ii) }}$	recall and substitution (1)	voltmeter connected in parallel with battery allow values that round to 58 e.g. 57.6	(2) evaluation (1) (power =) $58($ W)

Question number	Answer	Additional guidance	Mark
$\begin{aligned} & \hline 8 \text { (a) } \\ & \text { (iii) } \end{aligned}$	```substitution (1) (power =) 12 x 600(/1000) x 7 (x60) evaluation (1) (energy =) 3000 (J)```	allow values that round to 3000 e.g 3024 allow 1 mark for any other values of 3(.024) to any power of ten. if no other marks scored then award 1 mark for answers of 50,400 or 50.4 (substitution mark) award full marks for the correct answer without working.	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (b)}$ (i)	17.7 (A)		(1) AO1

Question number	Answer	Additional guidance	Mark
$\mathbf{8 ~ (b) ~ (i i) ~}$	(The resistance) increases		(1) AO1

Question number	Answer	Additional guidance	Mark
8 (b) (iii)	B 5A fuse	(1) AO1 smaller value than the expected current	
C and D are incorrect because they have a much higher value than the expected current			

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \mathbf{8 (b) (i v)} & \begin{array}{l}\text { An explanation linking two of } \\ \text { thick(er) wires have low(er) } \\ \text { resistance (1) }\end{array} & \begin{array}{l}\text { allow reverse } \\ \text { argument }\end{array} & \begin{array}{l}\text { (2) } \\ \text { AO1 }\end{array} \\ \begin{array}{l}\text { less thermal energy transferred } \\ \text { (in the wires)(1) }\end{array} & \begin{array}{l}\text { allow so wires do not } \\ \text { get hot }\end{array} & \begin{array}{l}\text { less potential difference / } \\ \text { voltage (drop) across the wires } \\ \text { (1) }\end{array} & \begin{array}{l}\text { allow less voltage is } \\ \text { lost } \\ \text { more current can be } \\ \text { carried }\end{array}\end{array}\right\}$

Total for question 8 = 11 marks

Question number	Answer	Additional guidance	Mark
9ai	D half the size of the voltage across the primary coil	(1) A and B are incorrect because the voltage will not necessarily be twice or half the value of the current	C is incorrect because the voltage across secondary coil will be less than that across the primary coil

Question number	Answer	Additional guidance	Mark
9 aii	an explanation linking three of magnetic field in primary / secondary coil / core (due to current) (1) magnetic field is alternating (1) (this magnetic) field cuts/links secondary coil (1) induces an alternating voltage (across secondary coil) (1)	(3) AO1	

Question number	Answer	Additional guidance	Mark
9b	substitution into $\frac{V p}{V s}=\frac{N p}{N s}$ (1) $\frac{230}{15}=\frac{600}{N s}$ Rearrangement and evaluation (1) $\begin{aligned} & (\mathrm{N} s=) \frac{600 \times 15}{230} \\ & =39 \end{aligned}$	allow substitution and rearrangement in either order accept values that round to 39 e.g. 39.13 award full marks for the correct answer without working. if no other marks scored then award 1 mark for answers of that round to 0.026 (eg 0.255) (substitution mark)	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO2 } \end{aligned}$

Question number	I ndicative content	Mark
*9(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. - coil moving/cuts through magnetic field - coil experiences changing magnetic field - induces a voltage/current in the coil - size of voltage/current depends on rate of change of magnetic field - rate of change depends on angle between direction of movement and direction of field. - greatest (rate of) change when coil moving perpendicular to field. - maximum current at Q and S - coil is horizontal at Q and S - coil moving vertically up at Q and down at S - direction of current at Q opposite to S. - no change when coil moving parallel to field. - zero current at P, R and T - coil vertical at P, R, and T Credit can be given for correctly labelled diagrams	(6) AO2 and AO3

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) - The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	- Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) - The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	- Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) - The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
Level 1	$1-2$	Additional guidance isolated facts about interaction of electric current and magnetic fields or one salient feature of the graph	Nossible candidate responses the coil experiences a changing magnetic field as it rotates. Size of the (induced) current varies.
Level 2	$3-4$	Additional guidance simple description of why current changes (either in direction or magnitude) and reference to at least one relevant point on the graph.	Possible candidate responses at position R the (plane of the) coil is parallel to the field and there is no Current Or position Q the coil is moving quickly athrough the field and the current is
large.			

Total for question 9 = 12 marks

Question number	Answer	Additional guidance	Mark
10ai	substitution into		(3) $\Delta \mathrm{Q}=\mathrm{m} \times \mathrm{s} \times \Delta \mathrm{T}$ $(\Delta \mathrm{Q})=1.41 \times 4200 \times(100-25)$

	evaluation (energy =) 444,150 (J) answer to 2 sf 440,000 (J)	ignore POT error for this mark independent mark allow 3 sf 444,000 award full marks for the correct answer without working award 1 mark for answers with values 148,050 or 592,200 (incorrect temp and sf) award 2 marks for answers with values 150,000 or 148,000 or 590,000 or 592,000 (incorrect temp but allowed sf)	

Question number	Answer	Additional guidance	Mark
10aii	substitution into $\begin{align*} & \Delta \mathrm{Q}=\mathrm{m} \times \mathrm{L} \\ & 450,000=(1.41-1.21) \times \mathrm{L} \tag{1} \end{align*}$ rearrangment $\begin{equation*} L=\frac{450,000}{0.2} \tag{1} \end{equation*}$ evaluation $\begin{equation*} (\mathrm{L})=2200000(\mathrm{~J} / \mathrm{kg}) \tag{1} \end{equation*}$	allow substitution and rearrangement in either order accept 2250000 award full marks for the correct answer without working award 1 mark for answers that round to 330,000 or 370,000 (incorrect mass used)	$\begin{aligned} & \text { (3) } \\ & \text { AO2 } \end{aligned}$

Question number	I ndicative content	Mark
*10(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. Procedure - Measure the temperature of the boiling water - Allow sufficient time for block to reach temperature of boiling water - Measure temperature of cold water in beaker - Using a thermometer - Transfer (hot) aluminium block to cold water in the beaker. - Work quickly to avoid thermal energy loss during transfer - Measure temperature of water - Stir to ensure even distribution - Measure maximum temperature reached by water - Calculate temp rise of water by subtracting initial from final temperature. - Calculate temp drop of aluminium by subtracting final temperature from 100. - Find mass of beaker and water and aluminium - Use a balance - Empty water from beaker and dry beaker and block - Weigh beaker and block alone - Find mass of water by subtraction. - Allow plausible method of finding mass of water before putting block in. Process results - Calculate thermal energy gained water using $\Delta \mathrm{Q}=\mathrm{m} \times \mathrm{c} \times \Delta \theta$ - Thermal energy gained by water $=$ thermal energy lost by aluminium - Specific heat capacity of aluminium $=$ $\frac{\text { thermal energy transferred }}{\text { mass of } \mathrm{Al} \times \text { temp drop of } \mathrm{Al}}$	$\begin{aligned} & \text { (6) } \\ & \text { AO2 and } \\ & \text { AO3 } \end{aligned}$

Level	Mark	Descriptor
	0	- No awardable content
Level 1	1-2	- The plan attempts to link and apply knowledge and understanding of scientific enquiry, techniques and procedures, flawed or simplistic connections made between elements in the context of the question. (AO2) - Analyses the scientific information but understanding and connections are flawed. An incomplete plan that provides limited synthesis of understanding. (AO3)
Level 2	3-4	- The plan is mostly supported through linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, some logical connections made between elements in the context of the question. (AO2) - Analyses the scientific information and provides some logical connections between scientific enquiry, techniques and procedures. A partially completed plan that synthesises mostly relevant understanding, but not entirely coherently. (AO3)
Level 3	5-6	- The plan is supported throughout by linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, logical connections made between elements in the context of the question. (AO2) - Analyses the scientific information and provide logical connections between scientific concepts throughout. A welldeveloped plan that synthesises relevant understanding coherently. (AO3)

Summary for guidance

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance Partially complete description of a suitable procedure with at least one measurement	Possible candidate responses Heat up the block in the boiling water. Then put the block into the cold water. Measure the temperature reached by the water.
Level 2	3-4	Additional guidance Mostly complete description of a suitable procedure with at least two measurements and some description of processing the results.	Possible candidate responses As above with Measure mass of water. Use $\Delta \mathrm{Q}=\mathrm{m} \times \mathrm{c} \times \Delta \theta$ to find thermal energy transferred
Level 3	5-6	Additional guidance Detailed description of a suitable procedure with most of the necessary measurements and a clear description of processing the results.	Possible candidate responses As above with Calculate temperature changes by subtraction. Calculate thermal energy lost by Al as being equal to thermal energy gained by water. Specific heat capacity of $\mathrm{Al}=$ thermal energy transferred $\overline{\text { mass of } \mathrm{Al} \times \text { temp drop of } \mathrm{Al}}$

Question 10 = 11 marks
 Total for paper $=\mathbf{1 0 0}$ marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

