Pearson Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE
In Physics (4PH1) Paper 1P and Science
(Double Award) (4SD0) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P70705A
Publications Code 4PH1_1P_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 1 (a) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
B; \\
A is incorrect because the top two field lines are in the wrong direction C is incorrect because all the field lines are in the wrong direction \(D\) is incorrect because the second field line from the top is in the wrong direction
\end{tabular}} \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
B; \\
A is incorrect because there is a magnetic for C is incorrect because the two nearest poles a \(D\) is incorrect because the forces on the magn gravity \\
C; \\
A is incorrect because the field lines are not stras B is incorrect because the field lines are not stra \(D\) is incorrect because the field lines are not par
\end{tabular} \& \begin{tabular}{l}
ch of the magnets site not alike through their centres of \\
nor parallel to each other nor parallel to each other o each other
\end{tabular} \& 1

1

\hline (c) \& steel / nickel / cobalt / neodymium; \& condone iron \& 1

\hline (d) \& | EITHER: |
| :--- |
| (plotting) compass used; |
| multiple compasses or repeated use of single |
| compass; |
| joining up of dots/idea of compasses forming continuous line; |
| OR |
| iron filings used; |
| sprinkled / eq; |
| card tapped (to reveal pattern); | \& | all marks can be awarded from a diagram |
| :--- |
| ignore 'poured’ or other heavy-handed method | \& 3

\hline
\end{tabular}

Question number	Answer	Notes	Marks
2 (a)	idea of subtracting the background count rate;		1
(b) (i) (ii)	time taken; and either of for (radio)activity to halve; for half of the (radioactive) nuclei / atoms / isotope to decay; indication on graph of a half in count rate; 2.6 (minutes);	allow "how long it takes" reject "half the time" allow count rate for activity ignore mass, substance e.g. line drawn across from 25 until it reaches the curve, then down to the time axis allow 2.5-2.7 (minutes) 2.3 (minutes) = 1 mark	2 2

Total for Question 2 = 5 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
travel at the same speed (in a vacuum) / can travel in a vacuum; \\
wavelength;
\end{tabular} \& \begin{tabular}{l}
allow both transverse waves, both transfer energy, both microwaves \\
allow idea of different range / penetration ignore amplitude
\end{tabular} \& 1
1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
speed \(=\) frequency \(\times\) wavelength; \\
substitution OR rearrangement; evaluation; \\
e.g. \\
\(3.0 \times 10^{8}=5.2 \times 10^{9} \times \lambda O R \lambda=v / f\) (wavelength \(=\)) \(0.058(\mathrm{~m})\)
\end{tabular} \& \begin{tabular}{l}
allow standard symbols and rearrangements \\
e.g. \(\lambda=v / f\) allow c for speed ignore s for speed \\
-1 for POT error \\
allow 0.06, 0.0576...(m)
\end{tabular} \& 1

2

\hline | (c) (i) |
| :--- |
| (ii) | \& | $\mathrm{D} ;$ |
| :--- |
| A is incorrect because electromagnetic waves are no B is incorrect because electromagnetic waves are no C is incorrect because sound waves are not electrom |
| vibrations / oscillations; correct relationship between direction of travel/energy transfer and direction of vibration for both transverse and longitudinal waves; | \& | longitudinal mechanical waves gnetic waves |
| :--- |
| both marks can be scored from a suitable diagram |
| allow movement of particles / eq for vibrations for this mark | \& 1

2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
4 (a)	protractor;		1
(b) (i) (ii) (iii)	any indication that the angle is between the normal and the incident ray; 79 (degrees); any straight ray to the right of the normal that comes from the point of incidence; correct angle of reflection;	allow 78-80 (degrees) ecf from indicated angle of incidence in (i) e.g. 10-12 (degrees) if angle marked between ray and boundary judge by eye judge by eye	1 1 2

Total for Question 4 = 5 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
(average) speed \(=\) distance (travelled) \(\div\) time (taken); \\
substitution OR rearrangement; evaluation; \\
e.g. \\
\(21=\) distance \(/ 0.14\) OR \(s=v \times t\) \\
(distance =) 2.9 (m)
\end{tabular} \& \begin{tabular}{l}
allow standard symbols and rearrangements e.g. \(v=s / t\) allow s, d for distance condone s for speed \\
allow 3, 2.94 (m)
\end{tabular} \& 1

2

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) | \& \[

$$
\begin{aligned}
& \text { force = mass } \times \text { acceleration; } \\
& \text { substitution OR rearrangement; } \\
& \text { evaluation; } \\
& \text { e.g. } \\
& 7600=1200 \times \mathrm{a} \text { OR } \mathrm{a}=\mathrm{F} / \mathrm{m} \\
& (\mathrm{a}=)(-) 6.3\left(\mathrm{~m} / \mathrm{s}^{2}\right) \\
& \text { substitution into } \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} ; \\
& \text { rearrangement; } \\
& \text { evaluation; } \\
& \text { e.g. } \\
& 0^{2}=21^{2}+[2 \times(-) 6.3 \times \text { distance }] \\
& \text { distance }=441 / 12.6 \\
& \text { distance }=35(\mathrm{~m})
\end{aligned}
$$

\] \& | allow standard symbols and rearrangements e.g. $a=F / m$ |
| :--- |
| allow 6.33... (m/s ${ }^{2}$) |
| ecf answer from (ii) |
| allow 34.8...(m) | \& | 1 |
| :--- |
| 2 |
| 3 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
6 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
any attempt to find gradient of graph; \\
use of two points on the line to calculate gradient; \\
evaluation; \\
e.g. \\
acceleration = gradient \\
acceleration \(=(-) 4.2 / 0.45\) \\
(acceleration \(=\)) \(-9.3\left(\mathrm{~m} / \mathrm{s}^{2}\right)\) \\
any clear indication that distance travelled = area; \\
correct use of data from graph; \\
evaluation; \\
e.g. \\
distance \(=\) area \\
distance \(=0.5 \times 0.45 \times 4.2\) \\
(distance \(=\)) \(0.95(\mathrm{~m})\)
\end{tabular} \& \begin{tabular}{l}
allow use of acceleration formula allow reading of pair of velocities with matching time interval reject positive answer \\
allow -9.3 to -9.4 \\
accept alternative method using \(v^{2}=u^{2}+2\) as with acceleration calculated in (i) allow attempt to calculate area of triangle \\
allow 0.94, 0.945 (m)
\end{tabular} \& 3

3

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) | \& | weight / gravitational force; |
| :--- |
| drag / air resistance; |
| one upward arrow and one downward arrow drawn; arrows originate at object; downward arrow drawn longer than upward arrow; |
| any four from: |
| MP1. object is accelerating (from A to B); |
| MP2. downward force greater than upward force (at A); |
| MP3. gradient / acceleration decreasing (from A to B); |
| MP4. drag increases as speed increases; |
| MP5. resultant force decreases; |
| MP6. idea that (just after) B, downward force = upward force; |
| MP7. idea that in region $B C$, acceleration is zero/close to zero; |
| MP8. terminal velocity achieved in region BC; | \& | ignore unqualified 'gravity', gravitational field strength ignore upthrust, lift |
| :--- |
| judge by eye |
| judge by eye |
| allow speeding up allow any recognisable upward force and downward force |
| allow any recognisable upward force and downward force |
| allow constant velocity | \& | 2 |
| :--- |
| 3 |
| 4 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
7 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& ```
idea that voltage across thermistor + voltage across
fixed resistor = voltage across cell;
0.59 (V);
voltage = current \times resistance;
substitution;
rearrangement;
evaluation;
e.g.
0.59=0.0062 * R
R=0.59 / 0.0062
(R =) 95 (\Omega)
``` \& \begin{tabular}{l}
allow 0.632 (V) \\
allow standard symbols and rearrangements e.g. V, I and R ignore c,C for current \\
ecf answer from (i) \\
-1 for POT error \\
answers of \(R=90.7\)... or \(R=101.9 \ldots(\Omega)\) gain full marks answer of 242 ( \(\Omega\) ) gains 2 marks \\
allow 95.2, 95.16... condone 95.1
\end{tabular} \& 2
1

3 <br>

\hline | (b) (i) |
| :--- |
| (ii) | \& | idea that resistance of thermistor decreases with an increase in temperature; idea of non-linear relationship; |
| :--- |
| voltmeter reading decreases; |
| (because) resistance of thermistor increases; idea that current in circuit/thermistor decreases; | \& | allow idea that rate of change is decreasing resistance inversely proportional to temperature scores both marks |
| :--- |
| allow voltage across resistor decreases | \& 2

3 <br>
\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 8 (a) (i) <br> (ii) | idea that kinetic store increases; idea that gravitational store increases; | e.g. chemical transferred to kinetic | $\overline{1}$ <br> 1 |
| (b) | two correct statements ticked; | 3 ticks scores 1 max 4 or more ticks scores 0 | 2 |
|  | Statement Correct ( $\checkmark$ ) |  |  |
|  | gravitational store increases |  |  |
|  | gravitational store stays the same |  |  |
|  | gravitational store decreases |  |  |
|  | kinetic store increases |  |  |
|  | kinetic store stays the same |  |  |
|  | kinetic store decreases $\checkmark$ |  |  |
| (c) (i) <br> (ii) | ```gravitational (force); substitution into given formula; evaluation; e.g. orbital speed = (2\times\pi\times7100)/5800 (orbital speed =) 7.7 (km/s)``` | allow weight, gravity <br> allow 7.69... (km/s) | 1 $2$ |
| (d) | any four from: <br> MP1. bars increase in temperature when facing towards Sun / decrease in temperature when facing away from Sun; <br> MP2. (when pointed at the Sun,) black bar increases temperature faster than white bar; <br> MP3. (because) black is a better absorber of radiation than white; <br> MP4. (so) black bar reaches a higher temperature than white bar; <br> MP5. (when pointed away from the Sun,) black bar decreases temperature faster than white bar; <br> MP6. (because) black is a better emitter of radiation than white; <br> MP7. convection/conduction plays no part in heat transfer (outside the spacecraft); <br> MP8. (because) there are no particles outside the spacecraft; | accept any clear reverse argument <br> allow energy, heat, IR for radiation <br> allow energy, heat, IR for radiation | 4 |



| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 10 (a) (i) <br> (ii) <br> (iii) | ```36 (degrees); refractive index = sin(i)/ sin(r); substitution; evaluation; answer quoted to 2 s.f.; e.g. refractive index = sin(61) / sin(36) (refractive index =) 1.48799... (refractive index =) 1.5``` | allow standard symbols and rearrangements e.g. $n=\sin (\mathrm{i}) / \sin (\mathrm{r})$ <br> allow ecf from (i) <br> mark independently | $1$ <br> 1 <br> 3 |
| (b) | red refracts less than violet; <br> correct link made between colour and refractive index; <br> correct link made between wavelength and refractive index; | allow RA allow red bends less than violet e.g. red has a lower refractive index than violet e.g. refractive index decreases with increasing wavelength | 3 |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
11 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
rearrangement OR substitution into given formula; evaluation; \\
e.g.
\[
\begin{aligned}
\& V_{2}=p_{1} \times V_{1} / p_{2} \text { OR } 120 \times 92=64 \times V_{2} \\
\& \text { (volume }=\text { ) } 170\left(\mathrm{~m}^{3}\right)
\end{aligned}
\] \\
constant temperature / amount of air / mass of air;
\end{tabular} \& \begin{tabular}{l}
allow 172, 173, 172.5 \\
however expressed e.g. number of particles constant
\end{tabular} \& 2

1 <br>

\hline | (b) (i) |
| :--- |
| (ii) | \& | any three from: |
| :--- |
| MP1. (reduction in temperature) reduces speed/KE of particles; |
| MP2. idea of fewer collisions with walls per unit time; |
| MP3. idea of each collision with wall being less 'hard'; |
| MP4. force (per unit area) on the container decreases; |
| substitution into given formula; |
| rearrangement; |
| evaluation; |
| e.g. $\begin{aligned} & 120 / 290=64 / T_{2} \\ & \mathrm{~T}_{2}=(64 \times 290) / 120 \end{aligned}$ |
| (temperature =) $150(\mathrm{~K})$ | \& | allow particles collide with walls less often |
| :--- |
| allow 155, 154.6... (K) | \& 3

3 <br>
\hline
\end{tabular}

Total for Question 11 = 9 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 12 (a) \& ```
calculation of energy transferred by battery;
efficiency formula stated;
correct substitution;
evaluation;
e.g.
energy supplied = VIt = 12 * 0.25 × 12=36 (J)
efficiency = useful energy output
total energy output
efficiency = 25 / 36 (×100%)
efficiency = 69 (%)
``` \& \begin{tabular}{l}
36 (J) seen seen or implied anywhere in working allow ecf from battery energy if clear \(25 / 36(\times 100)\) seen \\
allow 70, 69.4...(\%)
\end{tabular} \& 4 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
current / coil has a magnetic field; interaction between fields; resulting in a force; \\
forces on opposite sides of the coil are in opposite directions;
C - YZ; \\
A is incorrect because WX moves downwards \(B\) is incorrect because part of \(X Y\) moves downwards \\
\(D\) is incorrect because part of ZW moves downwards
\end{tabular} \& ignore references to attraction / repulsion \& 4

1

\hline
\end{tabular}

Total for Question $12=9$ marks

