Pearson Edexcel Level 3 GCE

Paper

 reference
Further Mathematics

Advanced Subsidiary Further Mathematics options
28: Decision Mathematics 2 (Part of option K only)

You must have: Mathematical Formulae and Statistical Tables (Green), calculator, D2 Answer Book (enclosed)

Candidates may use any calculator allowed by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of the answer book with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the Answer Book provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.
- Do not return the question paper with the D2 Answer Book.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 40 . There are 4 questions.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Write your answers in the answer book provided.

1. Five workers, A, B, C, D and E, are available to complete four tasks, P, Q, R and S.

Each task must be assigned to exactly one worker and each worker can do at most one task.
Worker B cannot be assigned to task R.
The amount, in pounds, that each worker will earn if they are assigned to each task is shown in the table below.

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
\mathbf{A}	55	56	58	57
\mathbf{B}	60	61	-	64
\mathbf{C}	59	60	62	63
\mathbf{D}	64	66	71	69
\mathbf{E}	65	68	72	66

The Hungarian algorithm is to be used to find the maximum total amount that can be earned by the five workers.
(a) Explain how the table should be modified to allow the Hungarian algorithm to be used, giving reasons for your answer.
(b) Reducing rows first, use the Hungarian algorithm to obtain the maximum possible total earnings. You should explain how any initial row and column reductions were made and how you determined if the table was optimal at each stage.
2.

Figure 1
Figure 1 shows a capacitated, directed network. The number on each arc represents the capacity of that arc. The numbers in circles represent an initial flow.
(a) State the value of the initial flow.
(b) Obtain the capacity of the cut that passes through the arcs AG, CG, GF, FT, FH and EH.
(c) Complete the initialisation of the labelling procedure on Diagram 1 in the answer book by entering values along $\mathrm{SD}, \mathrm{BD}, \mathrm{BE}$ and GF .
(d) Use the labelling procedure to find a maximum flow through the network. You must list each flow-augmenting route you use, together with its flow.
(e) Use the answer to part (d) to add a maximum flow pattern to Diagram 2 in the answer book.
(f) Prove that your answer to part (e) is optimal.
3. In your answer to this question you must show detailed reasoning.

A two-person zero-sum game is represented by the following pay-off matrix for player A.

	B plays X	B plays Y
A plays Q	4	-3
A plays R	2	-1
A plays S	-3	5
A plays T	-1	3

(a) Verify that there is no stable solution to this game.

Player B plays their option X with probability p.
(b) Use a graphical method to find the optimal value of p and hence find the best strategy for player B.
(c) Find the value of the game to player A.
(d) Hence find the best strategy for player A.
4. Sarah takes out a mortgage of $£ 155000$ to buy a house. Interest is added each month on the outstanding balance at a constant rate of $r \%$ each month. Sarah makes fixed monthly repayments to reduce the amount owed.

Each month, interest is added, and then her monthly repayment is used to reduce the outstanding amount owed.

The recurrence relationship for the amount of the mortgage outstanding after $n+1$ months is modelled by

$$
u_{n+1}=1.0025 u_{n}-x \quad n \geqslant 0
$$

where $£ u_{n}$ is the amount of the mortgage outstanding after n months and $£ x$ is the monthly repayment.
(a) State the value of r.
(b) Solve the recurrence relation to find an expression for u_{n} in terms of x and n.

Given that the mortgage will be paid off in exactly 30 years,
(c) determine, to 2 decimal places, the least possible value of x.

END

BLANK PAGE

BLANK PAGE

BLANK PAGE

