Pearson
 Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P70947A
Publications Code 4CH1_2C_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks	
(i)	M1 (X) measuring cylinder			
		M2 (Y) pipette	ALLOW graduated pipette	

Question number	Answer	Notes	Marks
3 (a)	C fluorine A is incorrect as astatine is black B is incorrect as bromine is brown D is incorrect as iodine is dark grey		1
(b)	A astatine B is incorrect as bromine is a liquid C is incorrect as chlorine is a gas D is incorrect as fluorine is a gas		1
(c)	An explanation that links the following four points M1 fluorine is more reactive than chlorine ORA M2 the outer shell is closer to the nucleus in fluorine / fluorine has fewer shells / fluorine has a smaller atomic radius ORA M3 there is a stronger attraction to the nucleus for an electron in fluorine ORA M4 so fluorine accepts an electron more readily ORA	ALLOW reactivity decreases down the group ORA ALLOW a fluorine atom is smaller than a chlorine atom ORA ALLOW there is less shielding in fluorine ORA	4
(d) (i)	$2 \mathrm{Li}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{LiCl}$	ALLOW multiples or fractions IGNORE state symbols even if incorrect ACCEPT $2 \mathrm{Li}^{+} \mathrm{Cl}^{-}$ REJECT any charges on Li or Cl_{2}	1

Question number	Answer	Notes	Marks
4 (a) (b)	M1 bright/white light OR bright/white flame M2 white powder/solid/ash A description that refers to the following two points M1 magnesium/Mg loses two electrons/becomes 2.8 M2 oxygen/O gains two electrons/becomes 2.8	ALLOW white smoke ALLOW grey powder /solid/ash REJECT white precipitate ACCEPT magnesium gives two electrons to oxygen for M1 and M2 Both marks can be scored from diagrams showing correct electronic configurations of the ions.	2
(c) (i) (ii)	magnesium is more reactive/higher in the reactivity series (than carbon)/magnesium is a better reducing agent (than carbon) ORA An explanation that links the following four points M1 (magnesium) has delocalised electrons M2 electrons can move M3 (magnesium chloride) can only conduct when molten/in solution OR (magnesium chloride) cannot conduct when solid M4 ions are free to move	ALLOW carbon cannot displace magnesium REJECT reference to ions or atoms moving for M2 ions are free to move when (magnesium chloride) is molten/in solution scores M3 and M4 REJECT reference to electrons moving for M4	1 4
(d) (i) (ii)	magnesium ions/ Mg^{2+} gains electrons $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{(-)}$	ALLOW electrons are gained REJECT magnesium /Mg gains electrons REJECT reference to loss or gain of oxygen ALLOW $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cl}_{2}$ ALLOW multiples or fractions IGNORE state symbols even if incorrect	1
			Total 11

Question number	Answer	Notes	Marks
5 (a) (i) (ii)		0 marks for division by atomic numbers or upside-down calculation ALLOW any number of sig figs except 1 ACCEPT alternative methods ACCEPT HCOOCH_{3} OR	2
(b) (i) (ii)	$2 \mathrm{HCOOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{HCOONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ M1 $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ M2 HCOONa and equation correctly balanced bubbles/ fizzing/ effervescence	IGNORE numbers in front of CO_{2} and/or $\mathrm{H}_{2} \mathrm{O}$ if only M1 scored REJECT NaCOOH ALLOW NaHCOO IGNORE gas given off ALLOW sodium carbonate disappears/dissolves	2
(c) (i) (ii)	propyl methanoate reversible reaction	spelling must be correct ALLOW propyl formate ALLOW reaction which goes both ways IGNORE equilibrium	1 1

Question number	Answer	Notes	Marks
6 (a)	M1 (moles of $\mathrm{TiO}_{2}=\frac{20 \times 10^{6}}{80}$ OR $2.5 \times 10^{5}(\mathrm{~mol})$ M2 (moles of $\left.\mathrm{Cl}_{2}=\right) 2.5 \times 10^{5} \times 2$ OR $5.0 \times 10^{5}(\mathrm{~mol})$ M3 (vol of $\mathrm{Cl}_{2}=$) $5.0 \times 10^{5} \times 24$ OR $12000000\left(\mathrm{dm}^{3}\right)$ M4 $1.2 \times 10^{7}\left(\mathrm{dm}^{3}\right)$	correct answer with or without working scores 4 ACCEPT 250000 (mol) ACCEPT 500000 (mol) ALLOW ecf on M2 and M3 6×10^{6} scores 3 3×10^{6} scores 3 6000000 scores 2 3000000 scores 2 2.083×10^{4} scores 3	4
(b)	An explanation that links the following two points M1 argon is unreactive/inert M2 (so argon) will not react with/oxidise the magnesium OR oxygen (in air) will react with/oxidise the magnesium	ALLOW argon will not react with/oxidise titanium OR oxygen (in air) will react with/oxidise the titanium	2
(c)	An explanation that links the following three points M1 in pure titanium all atoms are the same size OR layers/atoms can slide over each other (making it soft /malleable) M2 the alloy has atoms of different sizes M3 (which disrupts the structure so that) atoms/layers do not/harder to slide over each other (making it stronger) OWTTE	all marks can be awarded from labelled diagrams ALLOW cations/ions /particles in place of atoms throughout REJECT mention of molecules once only	3
			Total 9

Question number	Answer	Notes	Marks
7 (a)	carbon	ALLOW soot ALLOW copper(II) oxide /copper oxide/CuO REJECT copper(I) oxide	1
(b)	$\begin{aligned} & \text { M1 (amount of ethanol) }=0.92 \div 46 \text { OR } 0.02(0)(\mathrm{mol}) \\ & \text { M2 }(-) 18.2 \div 0.02(0)=(-) 910(\mathrm{~kJ} / \mathrm{mol}) \end{aligned}$	ALLOW alternative methods	2
(c)	Any 2 from M1 heat (energy)/ thermal energy was lost (to the surroundings/apparatus) M2 incomplete combustion (of ethanol) M3 the ethanol was impure/ethanol evaporates		2
(d) (i)	M1 \sum bonds broken $=4 \times C-H+2 \times 498$ M2 \sum bonds formed $=2 \times 805+4 \times 463$ OR 3462 M3 $4 \times \mathrm{C}-\mathrm{H}+996-3462=-890$ M4 C-H $=1576 \div 4=394(\mathrm{~kJ} / \mathrm{mol})$	correct answer with or without working scores 4 ALLOW 2×498 OR 996 seen ALLOW ecf throughout 839 without working scores 3 616.5/617 without working scores 3	4

(ii)	Energy M1 hor position M2 ver $\Delta H /-8$	$\mathrm{CH}_{4}+2 \mathrm{O}$ ΔH antal line to d correctly line in cor kJ/mol)	$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ how products in correct abelled ect position and labelled	ACCEPT double headed arrow or arrow pointing from reactants level to products level REJECT arrow pointing from products level to reactants level IGNORE any attempts at including activation energy If endothermic reaction shown M2 can be awarded for correct arrow/line labelled $\Delta H /+890(\mathrm{~kJ} / \mathrm{mol})$	2
					Total 11

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

