Pearson
 Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE
In Physics (4PH1) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P70953A
Publications Code 4PH1_2P_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	rate of doing work / rate of energy transfer;	condone "amount of energy transferred each second" accept "energy transferred per second" allow correct formula allow correct word equation reject idea of $\mathrm{P}=\mathrm{IV}$ reject "amount of energy in a given time"	1
(b)	results table constructed with appliance column and power column; power column heading to include correct unit;	allow alternative orientation with two rows condone power in $1^{\text {st }}$ column ignore names given to nonpower heading reject if units given with raw data	2
(c) (i) (ii)	```213 W identified; omission of anomalous result; mean calculated; candidate's mean correctly rounded and expressed to 3 significant figures; e.g. mean power \(=[199+202+200+201+201] \div 5\) mean power \(=200.6(\mathrm{~W})\) mean power \(=201(\mathrm{~W})\)```	allow ECF from (c)(i) 203 (W) scores 2 marks 202.667...(W) scores 1 mark	1 3

Total for Question 1 = 7 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 2 (a) \& \begin{tabular}{l}
D (kg m/s); \\
A is incorrect because this would be from mas \(B\) is incorrect because this would be from mass \(C\) is incorrect because this would be from ma
\end{tabular} \& \begin{tabular}{l}
velocity \\
\(\times\) velocity velocity \({ }^{2}\)
\end{tabular} \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
idea that (total) momentum before (collision) = (total) momentum after (collision) (in the absence of external forces); \\
setting up equation using conservation of momentum; \\
rearrangement; evaluation; \\
e.g.
\[
\begin{aligned}
\& 0=[1.9 \times 3.7]+[2.9 \times v] \\
\& v=-7.03 / 2.9 \\
\& (v=)-2.4(\mathrm{~m} / \mathrm{s})
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
allow references to explosion/event, rather than collision 'momentum is conserved' is insufficient \\
using either substitution of correct values or algebraically \\
allow
\[
[1.9 \times 3.7]=[2.9 \times v]
\] \\
allow 2.42... (m/s) ignore sign of final answer \\
correct evaluation of object Q's momentum i.e. (-)7.03 (\(\mathrm{kg} \mathrm{m} / \mathrm{s}\)) scores 1 mark if no other mark scored
\end{tabular} \& 1

3

\hline (c) \& | idea of carpet increases impact time; |
| :--- |
| carpet reduces rate of change of momentum (for the same speed or momentum of egg); |
| (carpet) reduces force; | \& | ignore references to |
| :--- |
| hard/soft floors |
| ignore references to absorbing force or reduction in 'impact' ignore references to energy |
| allow RA |
| allow RA |
| allow reference to given equation or word equation allow reduces deceleration or acceleration |
| allow RA | \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii)
\end{tabular} \& ```
substitution;
evaluation;
e.g.
(P =) 1.2 < 5.0
(P =) 6.0 (W)
substitution using same power as (a)(ii);
rearrangement;
evaluation;
e.g.
6.0 = I × 230
(I=) 6.0 / 230
(I =) 0.026 (A)
``` \& \begin{tabular}{l}
allow 6 (W) \\
allow ECF from (a)(i) \\
allow 0.03 (A)
\end{tabular} \& 2

3 <br>

\hline | (b) |
| :--- |
| (i) |
| (ii) |
| (iii) | \& | $\text { charge }=\text { current } \times \text { time; }$ |
| :--- |
| substitution of 1.2 A for current; correct evaluation in seconds; evaluation in minutes; |
| e.g. |
| $10500=1.2 \times$ time $O R t=10500 / 1.2$ |
| ( $\mathrm{t}=$ ) 8750 ( s ) |
| ( $\mathrm{t}=$ ) 150 minutes |
| time will be less / eq; |
| (because) current is greater; | \& | allow rearrangements and standard symbols e.g. $Q=I \times t$ reject c, C for current, charge |
| :--- |
| -1 POT error mark independently |
| allow 146, 145.83... |
| 145 minutes gets 2 marks only condone fractional minutes i.e. 145 5/6 min )or combined minutes \& seconds i.e. 145:50 |
| allow numerical statement e.g. "current is now 2.1 A " reject reference to input current | \& 1

3
3

2 <br>
\hline
\end{tabular}

| (c) | any four from: <br> MP1. (step-down) transformer decreases voltage; <br> MP2. current in (primary) coil produces magnetic field; <br> MP3. current is changing / alternating; <br> MP4. causing a (changing) magnetic field in the core; <br> MP5. the core strengthens the field (at the secondary coil) /eq; <br> MP6. field lines interact with secondary coil; <br> MP7. which induces a voltage in the secondary coil; <br> MP8. transformers won't work with (constant) d.c.; | accept input/output for primary/secondary <br> allow idea of fewer turns on secondary (than primary) including on the diagram (e.g. clearly more turns drawn and P/S coils labelled) <br> allow (primary) coil becomes an electromagnet <br> allow 'current is a.c.' <br> allow reference to magnetise and demagnetise <br> allow field lines cutting secondary coil allow induces a current in the secondary coil | 4 |
| :---: | :---: | :---: | :---: |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 4 (a) | $\begin{aligned} & 20(\mathrm{~Hz}) ; \\ & \text { to } 20000(\mathrm{~Hz}) ; \end{aligned}$ | units (if given) must be consistent with data i.e. $20 \mathrm{~Hz}-20 \mathrm{kHz}$ <br> max 1 mark if nonfrequency unit given | 2 |
| (b) <br> (i) <br> (ii) | microphone; <br> any three from: <br> MP1. idea of adjusting oscilloscope to obtain steady trace /eq; <br> MP2. idea of adjusting time base to display (at least) one cycle on screen /eq; <br> MP3. Idea of evaluating number of squares for full cycle /eq; <br> MP4. multiply number of squares (for full cycle) by time base /eq; | ignore sound sensor, ultrasound detector <br> e.g. "freeze the screen" <br> condone reference to a wavelength rather than a time period or full cycle | $\begin{aligned} & 1 \\ & 3 \end{aligned}$ |
| (c) <br> (i) <br> (ii) | ```number of squares for full cycle; correct evaluation of time period from candidate's number of squares; e.g. one full cycle = 6 squares time period = (6 +5 510-6 ) = 3 > 10-5 (s) substitution into f=1/T; evaluation; e.g. f=1/3\times10-5 (f=) 3.3 仵4(Hz)``` | reject answer that clearly uses the amplitude scale for 0 marks <br> allow $30 \times 10^{-6}(\mathrm{~s})$ <br> allow ECF from (c)(i) <br> allow 33 333.3..., <br> 33 300, 33000 etc (Hz) <br> allow 30000 | 2 |

Total for question $4=10$ marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 (a) | all ticks correct $=3$ marks <br> 3-4 ticks correct $=2$ marks <br> 1-2 ticks correct $=1$ mark |  | 3 |
| (b) | prevents radiation escaping (the reactor core) /eq; <br> by absorbing (high energy) neutrons/fission products/gamma; | ignore references to structural integrity of reactor <br> allow absorbs radiation allow idea of protecting workers outside the core <br> ignore imprecise technical language e.g. can't pass through, is stopped by etc. <br> condone "can't penetrate" | 2 |
| (c) (i) <br> (ii) | evaluation of total mass of U-235; evaluation of number of U-235 atoms; <br> e.g. <br> mass $=3.0 \% \times 0.0088=2.64 \times 10^{-4} \mathrm{~kg}$ number $=\left(2.64 \times 10^{-4} / 3.90 \times 10^{-25}\right)=6.8 \times 10^{20}$ <br> use of energy ratio; <br> correct evaluation; <br> e.g. <br> energy $=2.17 \times 10^{10} / 6.77 \times 10^{20}$ <br> energy $=3.2 \times 10^{-11}(\mathrm{~J})$ | -1 for POT error allow ECF from non-use of $3 \%$ i.e. $\{2.3 / 2.25 / 2.26\} \times 10^{22}$ <br> allow $6.77 \times 10^{20}$ <br> allow ECF from (c)(i) giving $9.6 \times 10^{-13}$ <br> allow $3.21 \times 10^{-11}$ <br> allow 9.6(4...) $\times 10^{-13}$ (ECF <br> 2.25 or $2.3 \times 10^{22}$ from (i)) | $2$ <br> 2 |

Total for question 5 = 9 marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 6 (a) | idea that universe is expanding / getting larger; idea that universe is cooling; |  | 2 |
| (b) | MAX four from: <br> MP1. identification of cosmic (microwave) background radiation (CMBR); <br> MP2. CMBR appears to be the same in all directions/is everywhere; <br> MP3. which implies all parts of the Universe were in contact a long time ago; <br> MP4. wavelength has increased as the universe has expanded; <br> MP5. universe was (significantly) hotter long ago; <br> MAX four from: <br> MP6. identification of red shift of galaxies; <br> MP7. the further the galaxy is (from Earth), the greater the red-shift; <br> MP8. larger redshift means faster movement of galaxies; <br> MP9. (therefore) the further away, the faster the galaxy moves away; <br> MP10. galaxies moving apart from each other implies expansion from a single point or since the Big Bang; | allow idea of coming from single point or singularity <br> allow 'frequency has decreased as the universe has expanded' <br> allow RA <br> condone "star" for "galaxy" for MP7-10 <br> accept speed of galaxies increases (is directly proportional to) with increased distance; <br> accept 'relationship between speed and distance' for 'galaxies moving apart from each other' allow singularity for single point | 6 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 7 (a) | energy to change temperature by $1^{\circ} \mathrm{C}$; per kilogram of mass; | accept 1 K <br> DOP | 2 |
| (b) | any two from: <br> MP1. leave block in oven for longer / check it is definitely at $220^{\circ} \mathrm{C}$; <br> MP2. idea of transferring block from oven to water as quickly as possible; <br> MP3. adding insulation to the container (of water); <br> MP4. place a lid on container (of water); <br> MP5. use container (of water) with low (specific) heat capacity or low thermal conductivity; <br> MP6. idea of repeating and \{average/remove anomalies\}; | e.g. wrap it in wool <br> e.g. use a polystyrene cup | 2 |
| (c) (i) <br> (ii) <br> (iii) | ```\(38\left({ }^{\circ} \mathrm{C}\right)\); \((38-20=) 18^{\circ} \mathrm{C}\); substitution; rearrangement of \(\Delta Q=m \times c \times \Delta T\); evaluation; e.g. \(190000=2.3 \times \mathrm{c} \times 18\) \(\mathrm{c}=190000 /(2.3 \times 18)\) \((\mathrm{c}=)=4600\left(\mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)\)``` | allow ECF from (c)(ii) <br> -1 for POT <br> allow 4589.37..., 4590 etc | $\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$ |



Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

