Please check the examination d	etails below before ente	ering your candidate information
Candidate surname		Other names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Thursday 19	Novem	ber 2020
Afternoon (Time: 2 hours)	Paper R	eference 4PM1/01
Further Pure N Paper 1	/lathema	tics
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must **NOT** write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

	You must write down all the stages in your working.	
1	Differentiate with respect to x	
	$6e^{3x^2}\cos 2x$	
		(3)
	(Total for Question 1 is 3 ma	rks)

- 2 (a) Using the axes below sketch the line with equation
 - (i) y = 6
- (ii) y + x = 10
- (iii) y = 2x 5

Show the coordinates of any point where each line crosses the coordinate axes.

(3)

(b) Show, by shading on your sketch, the region R defined by the inequalities

$$y + x \leq 10$$

$$y \geqslant 2x - 5$$

$$x \geqslant 0$$

(1)

Figure 1

Figure 1 shows the right pyramid ABCDE. The base, ABCD, of the pyramid is a horizontal rectangle with AD = 12 cm and CD = 16 cm. The height ME of the pyramid is 14 cm where M is the point of intersection of the diagonals of the base.

The sloping edges, EA, EB, EC and ED of the pyramid are all of equal length.

(a) Calculate, to 3 significant figures, the length of a sloping edge.	(3)
Calculate, in degrees to one decimal place, the size of	
(b) the angle between AE and the base,	(2)
(c) the angle between the plane <i>AED</i> and the base.	(3)
(c) the angle between the plane AED and the base.	(3)

Figure 2

Figure 2 shows the graph of $y = x + \frac{5}{x^2}$ for $1 \le x \le 4$ drawn on a grid.

(a) By drawing a suitable straight line on the grid, obtain estimates, to one decimal place, for the roots of the equation

$$x^3 - 4x^2 + 5 = 0$$

in the interval $1 \leqslant x \leqslant 4$

(3)

(b) By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, for the root of the equation

$$x^3 - x^2 - 5 = 0$$

in the interval $1 \leqslant x \leqslant 4$

(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

5	The points P , Q , R and S have coordinates	rdinates (4, 7)), (3, 0), (10, 1) and (11, 8) respectively.	
	(a) Show, by calculation, that the l	ines PR and Q	QS are perpendicular.	
				(3)
	(b) Find the exact lengths of (i) PR	(ii) QS	(2)
	() F: 14	1 0000		(2)
	(c) Find the area of the quadrilater	al <i>PQRS</i>		(2)

6	An arithmetic series A has first term a and common difference d .	
	The sum S_n of the first n terms of A is given by $S_n = n(15 + 2n)$	
	(a) Find the value of a and the value of d .	(4)
	(b) Find the 20th term of A.	(2)
	Given that $S_{2p} - 2S_p = 1 + S_{(p-1)}$	
	(c) find the value of p.	(4)

Given that f(x) can be written in the form $(x + a)^2 + b$, where a and b are constants,

(2)

- (b) Hence, or otherwise, find
 - (i) the minimum value of f(x)
 - (ii) the value of x for which this minimum occurs.

(2)

The curve C has equation y = f(x)

The line *l* has equation y = x + 5

(c) Use algebra to find the coordinates of the points of intersection of C and l.

(4)

(d) Use algebraic integration to find the exact area of the finite region bounded by C and l.

(5)

|
 |
|------|
|
 |
|
 |
|
 |

DO NOT WRITE IN THIS AREA

Question 7 continued	

- 8 Given that $2xy + 5y = e^x$
 - (a) show that $\frac{dy}{dx} = \frac{y(2x+3)}{2x+5}$

(5)

(b) find the value of $\frac{dy}{dx}$ when x = 0

(2)

(c) find an equation of the normal to the curve with equation $2xy + 5y = e^x$ at the point where x = 0

Give your answer in the form px + qy + r = 0 where p, q and r are integers.

(3)

Question 8 continued

BDiagram **NOT**accurately drawn C 2x cm

Figure 3

Figure 3 shows triangle ABC with AB = 12 cm, BC = 6 cm and AC = 2x cm.

The point *D* is the midpoint of AC and BD = 6 cm.

 $\angle ABD = \theta^{\circ}$ and $\angle DBC = \phi^{\circ}$ where $\theta \neq 0$ and $\phi \neq 0$

(a) Show that
$$\cos ADB = \frac{x^2 - 108}{12x}$$

(2)

(b) Hence, or otherwise, show that $AC = 6\sqrt{6}$ cm.

(4)

(c) Show that $\sin(\theta^{\circ} + \phi^{\circ}) = \sin \phi^{\circ}$

(4)

(d) Hence show that $\theta = 180 - 2\phi$

(2)

Question 9 continued	

Figure 4

Figure 4 shows a right circular cone with base radius r cm and slant height l cm. Figure 4 also shows a sector of a circle with radius R cm and arc length L cm.

The area of the curved surface of the cone is $A \text{ cm}^2$

By considering how the sector of the circle can be folded to exactly form the curved surface of the cone with R and L suitably chosen,

(a) prove that $A = \pi r l$

(4)

Sand is poured onto a horizontal surface at a constant rate of 1.5 cm³/s.

The sand forms a pile in the shape of a right circular cone with its base on the surface. The curved surface area of the cone, $A \, \text{cm}^2$, increases in such a way that the height of the cone is always three times the radius of the base of the cone.

Given that $\frac{dA}{dr} = k\pi r$, where k is a constant,

(b) find the exact value of k.

(3)

(c) Calculate the rate, in cm²/s, to 3 significant figures, at which the curved surface area of the pile is increasing when the height of the pile is 24 cm.

				×
				1
				×
				×
				0
		Ė		
	1		7	۰,
	1	ĸ		×
		٩		a
				×
				4
		ú		۳
	à			
	ч		7	7
	А	ь		2
		ø	¢	ø
	Z	2	2	3
	9	Ų	۹	ę
				۸,
	١,	ä		
	А	4		2
	b	6		a
	♂	9		×
		Κ	j	
	ч	۰		P
		à		2
	3	₹		2
				×
	ζ		2	×
	٩	ø	á	ø
	٩	ø	á	ø
	٩	ø	á	ø
	٩		á	ø
	9	Ş		į
	9	Ş		į
	9	Ş		į
	9	Ş		į
	9	Ş		į
	9	Ş		į
	9	ø		į
	9	Ş		į
	9	Ş		į
				į

Question 10 continued

Figure 5

In Figure 5, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$

The point C divides OB in the ratio 1:3

The point D is the midpoint of AC

- (a) Find, as a simplified expression in terms of **a** and **b**
 - (i) \overrightarrow{AC}
- (ii) \overrightarrow{OD}
- (iii) \overrightarrow{BD}

(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The point E is such that $\overrightarrow{OE} = \lambda \overrightarrow{OA}$

Given that E, D and B are collinear

(b) find the value of λ

(4)

Given that $\frac{\text{area }\Delta OAC}{\text{area }\Delta OEB} = \mu$

(c) find the value of μ

(4)

.....

DO NOT WRITE IN THIS AREA

