Pearson
 Edexcel

Mark Scheme (Results)

June 2022

Pearson Edexcel International Advanced Level In Physics (WPH15)
Paper 5: Thermodynamics, Radiation, Oscillations and Cosmology

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Question Paper Log Number: P71881A
Publications Code: WPH15_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
1	B is the correct answer A is not the correct answer, as large values could fit on a linear scale C is not the correct answer, as distance from the star only affects the intensity D is not the correct answer, as the temperature and luminosity scales are independent	(1)
2	C is the correct answer A is not the correct answer, as $a=(2 \pi f)^{2} A$ B is not the correct answer, as $E_{\mathrm{k}}=\frac{1}{2} m(2 \pi f A)^{2}$ D is not the correct answer, as $T=\frac{1}{f}$	(1)
3	C is the correct answer A is not the correct answer, as angular velocity has units (rad) s^{-1} B is not the correct answer, as frequency has units $\mathrm{Hz}=\mathrm{s}^{-1}$ D is not the correct answer, as rate of decay has units $\mathrm{Bq}=\mathrm{s}^{-1}$	(1)
4	\mathbf{B} is the correct answer, as $F=\frac{G M m}{r^{2}}$	(1)
5	D is the correct answer, as the temperature must be very high for the nuclei to come close enough for fusion and the density must be very high for the rate of collision of nuclei to be sufficient to sustain fusion.	(1)
6	B is the correct answer, as $g=\frac{G M}{r^{2}}$ and $M=\frac{4}{3} \pi \rho r^{3}$	(1)
7	\mathbf{C} is the correct answer, as the mean momentum of the molecules is zero	(1)
8	\mathbf{C} is the correct answer, as the molecules do not have to be identical	(1)
9	D is the correct answer A is not the correct answer, as this graph shows N decreasing with t B is not the correct answer, as this graph shows N decreasing with t C is not the correct answer, as this graph shows an increasing rate of change of N	(1)
10	A is the correct answer, as the velocity is the gradient of the graph of displacement against time, and the gradient of this graph starts at zero and then becomes negative for the first half cycle.	(1)

Question Number	Answer		Mark
11	Use of $L=14800 L_{\text {Sun }}$ Use of $I=\frac{L}{4 \pi d^{2}}$ $d=1.1 \times 10^{23} \mathrm{~m}$ Example of calculation $\begin{aligned} & L_{\text {candle }}=14800 \times 3.83 \times 10^{26} \mathrm{~W}=5.67 \times 10^{30} \mathrm{~W} \\ & d=\sqrt{\frac{L}{4 \pi I}}=\sqrt{\frac{5.67 \times 10^{30} \mathrm{~W}}{4 \pi \times 3.64 \times 10^{-17} \mathrm{~W} \mathrm{~m}}{ }^{-2}}=1.11 \times 10^{23} \mathrm{~m} \end{aligned}$	(1) (1) (1)	3
	Total for question 11		3

Question Number	Answer		Mark
$\mathbf{1 3 (a)}$	Top line correct	(1)	
	Bottom line correct	(1)	$\mathbf{2}$
	Example of calculation		
	${ }_{5}^{40} \mathrm{~K} \rightarrow{ }_{20}^{40} \mathrm{Ca}+{ }_{-1}^{0} \beta^{-}+{ }_{0}^{0} \overline{\mathbf{V}}$		
$\mathbf{1 3 (b)}$	Any TWO from:	(1)	
	Both have the same mass	(1)	
	Both are leptons	(1)	
	Both are fundamental particles	(1)	
	Both have the same magnitude charge	(1)	$\mathbf{2}$
	Both are deflected in electric/magnetic fields	Both are (weakly) ionising	

13(c)	Use of $\lambda=\frac{\ln 2}{t_{1 / 2}}$ Use of $A=A_{0} e^{-\lambda t}$ to find time for activity to fall to background level $t=8.6 \times 10^{9}$ years, so claim is incorrect OR Use of $\lambda=\frac{\ln 2}{t_{1 / 2}}$ Use of $A=A_{0} e^{-\lambda t}$ to find activity after 9×10^{9} years $A=0.33 \mathrm{~Bq}$ so claim is incorrect Example of calculation $\begin{aligned} & \lambda=\frac{\ln 2}{1.25 \times 10^{9} \text { years }}=5.55 \times 10^{-10} \text { year }^{-1} \\ & \ln \left(\frac{0.42 \mathrm{~Bq}}{48.6 \mathrm{~Bq}}\right)=-5.55 \times 10^{-10} \text { years }^{-1} \times t \\ & \therefore t=\frac{-4.75}{5.55 \times 10^{-10} \text { years }^{-1}}=8.56 \times 10^{9} \text { years } \end{aligned}$	(1) (1) (1) (1) (1) (1)	3
	Total for question 13		7

Question Number	Answer	Mark
16(a)(i)	Use of $F=\frac{G M m}{r^{2}}$ with $F=m \omega^{2} r$ Re-arrangement with $\omega=\frac{2 \pi}{T}$ to obtain $T^{2}=\frac{(2 \pi)^{2}}{G M} r^{3}$ Statement that G, M (and π) are constants, so $T^{2} \propto r^{3}$ (dependent upon MP2) OR Use of $F=\frac{G M m}{r^{2}}$ with $F=\frac{m v^{2}}{r}$ Re-arrangement with $v=\frac{2 \pi r}{T}$ to obtain $T^{2}=\frac{(2 \pi)^{2}}{G M} r^{3}$ Statement that G, M (and π) are constants, so $T^{2} \propto r^{3}$ (dependent upon MP2) Example of calculation $\begin{aligned} & \frac{G M m}{r^{2}}=m \omega^{2} r \\ & \frac{G M}{r^{2}}=\left(\frac{2 \pi}{T}\right)^{2} r \\ & T^{2}=\frac{(2 \pi)^{2}}{G M} r^{3} \\ & \therefore T^{2} \propto r^{3} \end{aligned}$	3

16(a)(ii)	Use of $T^{2} \propto r^{3}$ $\begin{equation*} T_{\mathrm{J}}=142 \text { months (} 11.9 \text { years) } \tag{1} \end{equation*}$ Use of $\omega=\frac{\theta}{t}$ and $\omega=\frac{2 \pi}{T}$ Calculation of time elapsed for planets to be in opposition Time between opposition is 13.1 months, with an appropriate conclusion (dependent upon MP4) Example of calculation $\begin{aligned} & \left(\frac{T_{J}}{T_{E}}\right)^{2}=\left(\frac{r_{J}}{r_{E}}\right)^{3} \\ & \left(\frac{T_{J}}{1 \text { year }}\right)^{2}=\left(\frac{7.8 \times 10^{11} \mathrm{~m}}{1.5 \times 10^{11} \mathrm{~m}}\right)^{3} \\ & T_{J}=12 \text { months } \times \sqrt{\left(\frac{7.8 \times 10^{11} \mathrm{~m}}{1.5 \times 10^{11} \mathrm{~m}}\right)^{3}}=142 \text { months } \end{aligned}$ At the next opposition Earth will have done one more orbit than Jupiter plus whatever fraction of an orbit Jupiter has completed. If t is the time to next opposition, both planets will have the same angular displacement, so equating $\theta=2 \pi t / T$ for both planets where for Earth the time is ($t-12$). $\begin{equation*} \frac{2 \pi \mathrm{rad}(t-12) \text { month }}{12 \text { month }}=\frac{2 \pi \mathrm{rad} t}{142 \text { month }} \therefore t=13.1 \text { month } \tag{1} \end{equation*}$	5
16(b)	Use of $V=(-) \frac{G M}{r}$ Use of $\Delta V \times m$ $\begin{equation*} \Delta E_{\text {grav }}=3.3 \times 10^{34} \mathrm{~J} \tag{1} \end{equation*}$ Example of calculation $\begin{aligned} & \Delta V=-G M\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) \\ & \begin{aligned} \Delta V=-6.67 & \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 2.0 \times 10^{30} \mathrm{~kg} \\ & \quad \times\left(\frac{1}{8.2 \times 10^{11} \mathrm{~m}}-\frac{1}{7.4 \times 10^{11} \mathrm{~m}}\right) \end{aligned} \\ & \begin{array}{l} \Delta V=1.76 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1} \end{array} \\ & \begin{array}{r} \therefore \Delta E_{\text {grav }}= \\ 1.76 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1} \times 1.9 \times 10^{27} \mathrm{~kg}=3.34 \times 10^{34} \mathrm{~J} \end{array} \end{aligned}$	3
	Total for question 16	11

Question Number	Answer		Mark
17(a)	There is a (resultant) force/acceleration that is: Proportional to the displacement from the equilibrium position and (always) acting towards the equilibrium position	(1) (1)	2
17(b)(i)	Use of $k=-\frac{\Delta F}{\Delta x}$ $k=4100\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ Example of calculation $k=-\frac{m g}{\Delta x}=\frac{75 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}}{0.18 \mathrm{~m}}=4088 \mathrm{~N} \mathrm{~m}^{-1}$	(1) (1)	2
17(b)(ii)	Use of $T=2 \pi \sqrt{\frac{m}{k}}$ Use of $f=\frac{1}{T}$ $f=1.2 \mathrm{~Hz}$ (allow ecf from (b)(i)) Example of calculation $\begin{aligned} & T=2 \pi \sqrt{\frac{75 \mathrm{~kg}}{4090 \mathrm{~N} \mathrm{~m}^{-1}}}=0.85 \mathrm{~s} \\ & f=\frac{1}{0.85 \mathrm{~s}}=1.18 \mathrm{~Hz} \end{aligned}$	(1) (1) (1)	3

| $\mathbf{1 7 (c)}$ | The resultant force on the man $=(m g-R)$ where R is the (normal) contact force
 from the board
 R decreases as his displacement (from the equilibrium position) increases
 Man loses contact with board when $R=0$
 Or Man loses contact with board when resultant force on man is equal to his
 weight | (1) |
| :---: | :--- | :--- | :--- |\quad (1) | OR (1) |
| :--- |
| Acceleration (for SHM) increases as displacement increases
 Maximum (downward) acceleration of man is g
 Man loses contact with board when acceleration of the board is equal to g |

Question Number	Answer		Mark
18(a)(i)	Use of trigonometry to calculate distance Or use of small angle approximation to calculate distance Distance to Wolf $359=7.5 \times 10^{16}(\mathrm{~m})$ Example of calculation $\tan \left(2.01 \times 10^{-6}\right)=\frac{1.50 \times 10^{11} \mathrm{~m}}{d}$ $\therefore d=\frac{1.50 \times 10^{11} \mathrm{~m}}{2.01 \times 10^{-6}}=7.46 \times 10^{16} \mathrm{~m}$	(1) (1)	2
18(a)(ii)	Parallax angle decreases as distance from the Earth increases Or parallax is only suitable for (relatively) close stars As parallax angle is too small to measure for distant stars	(1) (1)	2
18(b)(i)	$\lambda_{\text {max }}$ read from graph Use of $\lambda_{\text {max }} T=2.898 \times 10^{-3} \mathrm{~m} \mathrm{~K}$ $T=2680(\mathrm{~K}) \text { [accept } 2635 \mathrm{~K} \rightarrow 2760 \mathrm{~K}]$ Example of calculation $T=\frac{2.898 \times 10^{-3} \mathrm{~m} \mathrm{~K}}{1.08 \times 10^{-6} \mathrm{~m}}=2683 \mathrm{~K}$	(1) (1) (1)	3
18(b)(ii)	Use of $L=\sigma A T^{4}$ $L=4.70 \times 10^{23} \mathrm{~W} \text { (allow ecf from (b)(i)) }$ Comparison of calculated value of L with $L_{\text {sun }}$ and appropriate conclusion Or comparison of calculated $L / L_{\text {sun }}$ percentage with 0.1% and appropriate conclusion Example of calculation $\begin{aligned} & L=4 \pi\left(0.16 \times 6.96 \times 10^{8} \mathrm{~m}\right)^{2} \times 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}(2700 \mathrm{~K})^{4} \\ & L=4.70 \times 10^{23} \mathrm{~W} \\ & \frac{L}{L_{\text {Sun }}} \times 100 \%=\frac{4.70 \times 10^{23} \mathrm{~W}}{3.83 \times 10^{26} \mathrm{~W}} \times 100 \%=0.12 \% \end{aligned}$	(1) (1) (1)	3

Question Number	Answer		Mark
19(a)	Use of $p V=N k T$ Use of $\frac{1}{2} m\left\langle c^{2}\right\rangle=\frac{3}{2} k T$ $\frac{1}{2} m\left\langle c^{2}\right\rangle=5.8 \times 10^{-20} \mathrm{~J}$ Example of calculation $\begin{aligned} & T=\frac{p V}{N k}=\frac{4.25 \times 10^{4} \mathrm{~Pa} \times 1.50 \times 10^{-5} \mathrm{~m}^{3}}{1.65 \times 10^{19} \times 1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}}=2800 \mathrm{~K} \\ & \frac{1}{2} m\left\langle c^{2}\right\rangle=\frac{3}{2} \times 1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \times 2800 \mathrm{~K}=5.80 \times 10^{-20} \mathrm{~J} \end{aligned}$	(1) (1) (1)	3
19(b)	Use of $\frac{v}{c}=\frac{\Delta \lambda}{\lambda}$ with wavelength measured on Earth in denominator $\mathrm{v}=13500 \mathrm{~m} \mathrm{~s}^{-1}$ The student is correct to say that the star is moving towards the Earth, as the measured wavelength is less than that from the lamp spectrum. Comparison of calculated velocity with $1400 \mathrm{~m} \mathrm{~s}^{-1}$ and appropriate conclusion. Example of calculation $v=\frac{\Delta \lambda}{\lambda} c=\frac{(576.933-576.959) \times 10^{-9} \mathrm{~m}}{576.959 \times 10^{-9} \mathrm{~m}} \times 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}=(-) 1.35 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$ So the star's velocity is much larger than $1400 \mathrm{~m} \mathrm{~s}^{-1}$	(1) (1) (1) (1)	4
19(c)	On the main sequence, above the position of the Sun Or above and to the left of the position of the Sun		1
	Total for question 18		8

Question Number	Answer		Mark
20(a)(i)	Use of appropriate equation of motion $t=2.9(\mathrm{~s})$ Example of calculation $\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \\ & \therefore-41.5 \mathrm{~m}=0.5 \times\left(-9.81 \mathrm{~m} \mathrm{~s}^{-2}\right) t^{2} \\ & t=\sqrt{\frac{-41.5 \mathrm{~m}}{-0.5 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2}}}=2.91 \mathrm{~s} \end{aligned}$	(1) (1)	2
20(a)(ii)	Use of $V=\frac{4}{3} \pi r^{3}$ Use of $\rho=\frac{m}{V}$ Use of $\Delta E=m c \Delta \theta$ Use of $\Delta E=L \Delta m$ Use of $P=\frac{\Delta W}{\Delta t}$ $P=1.6$ W (allow ecf from (a)(i)) Example of calculation $\begin{aligned} & V=\frac{4}{3} \pi\left(1.2 \times 10^{-3} \mathrm{~m}\right)^{3}=7.24 \times 10^{-9} \mathrm{~m}^{3} \\ & m=7.24 \times 10^{-9} \mathrm{~m}^{3} \times 1.13 \times 10^{4} \mathrm{~kg} \mathrm{~m}^{3}=8.18 \times 10^{-5} \mathrm{~kg} \\ & E=8.18 \times 10^{-5} \mathrm{~kg} \times 130 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \times(615 \mathrm{~K}-370 \mathrm{~K})=2.61 \mathrm{~J} \\ & E=8.18 \times 10^{-5} \mathrm{~kg} \times 2.47 \times 10^{4} \mathrm{~J} \mathrm{~kg}^{-1}=2.02 \mathrm{~J} \\ & P=\frac{(2.61 \mathrm{~J}+2.02 \mathrm{~J})}{2.9 \mathrm{~s}}=1.60 \mathrm{~W} \end{aligned}$	(1) (1) (1) (1) (1) (1)	6
20(b)(i)	Change in gravitational potential energy of the lead shot and change in internal energy are both proportional to the mass of lead shot Or $E_{\mathrm{k}}\left(=\frac{1}{2} m v^{2}\right)$ and $\Delta E=m c \Delta \theta$ both include the same mass Or $E_{\text {grav }}(=m g \Delta h)$ and $\Delta E=m c \Delta \theta$ both include the same mass So, mass cancels and $\Delta \theta$ is independent of the mass (if no energy is transferred to the surroundings) (dependent upon MP1)	(1) (1)	2
20(b)(ii)	Not all the energy will be used to increase the temperature of the lead shot Or some energy will be transferred to the surroundings Or not all the lead shot will fall through a distance d The method will not be accurate, as it will give a value of c that is too large Or The method will not be accurate as the (measured) temperature change will be too small	(1) (1)	2
	Total for question 20		12

