

National
Qualifications
2018

2018 Physics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Physics Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in the paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

- (a) Marks for each candidate response must always be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your team leader.
- (d) There are no half marks awarded.
- (e) Where a wrong answer to part of a question is carried forward and the wrong answer is then used correctly in the following part, the candidate should be given credit for the subsequent part or 'follow on'.
- (f) Unless a numerical question specifically requires evidence of working to be shown, full marks should be awarded for a correct final answer (including units if required) on its own.
- (g) Credit should be given where a diagram or sketch conveys correctly the response required by the question. It will usually require clear and correct labels (or the use of standard symbols).
- (h) Marks are provided for knowledge of relevant formulae alone. When a candidate writes down several formulae and does not select the correct one to continue with, for example by substituting values, no mark can be awarded.
- (i) Marks should be awarded for non-standard symbols where the symbols are defined and the relationship is correct, or where the substitution shows that the relationship used is correct. This must be clear and unambiguous.
- (j) No marks should be awarded if a 'magic triangle' (eg) is the only statement in a candidate's response. To gain the mark, the correct relationship must be stated
eg $V = IR$ or $R = \frac{V}{I}$, etc.
- (k) In rounding to an expected number of significant figures, the mark can be awarded for answers which have up to two figures more or one figure less than the number in the data with the fewest significant figures.
- (l) The incorrect spelling of technical terms should usually be ignored and candidates should be awarded the relevant mark, provided that answers can be interpreted and understood without any doubt as to the meaning. Where there is ambiguity, the mark should not be awarded. Two specific examples of this would be when the candidate uses a term that might be interpreted as 'reflection', 'refraction' or 'diffraction' (eg 'defraction') or one that might be interpreted as either 'fission' or 'fusion' (eg 'fussion').

(m) Marks are awarded only for a valid response to the question asked. For example, in response to questions that ask candidates to:

- **identify, name, give, or state**, they need only name or present in brief form;
- **describe**, they must provide a statement or structure of characteristics and/or features;
- **explain**, they must relate cause and effect and/or make relationships between things clear;
- **determine or calculate**, they must determine a number from given facts, figures or information;
- **estimate**, they must determine an approximate value for something;
- **justify**, they must give reasons to support their suggestions or conclusions, eg this might be by identifying an appropriate relationship and the effect of changing variables.
- **show that**, they must use physics [and mathematics] to prove something eg a given value - *all steps, including the stated answer, must be shown*;
- **predict**, they must suggest what may happen based on available information;
- **suggest**, they must apply their knowledge and understanding of physics to a new situation. A number of responses are Acceptable: marks will be awarded for any suggestions that are supported by knowledge and understanding of physics;
- **use your knowledge of physics or aspect of physics to comment on**, they must apply their skills, knowledge and understanding to respond appropriately to the problem/situation presented (for example by making a statement of principle(s) involved and/or a relationship or equation, and applying these to respond to the problem/situation). They will be rewarded for the breadth and/or depth of their conceptual understanding.

(n) **Marking in calculations**

Question:

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor. (3 marks)

Candidate answer

Mark + Comment

1. $V = IR$	1 mark: formula
$7.5 = 1.5R$	1 mark: substitution
$R = 5.0 \Omega$	1 mark: correct answer
2. 5.0Ω	3 marks: correct answer
3. 5.0	2 marks: unit missing
4. 4.0Ω	0 marks: no evidence, wrong answer
5. $\underline{\quad} \Omega$	0 marks: no working or final answer
6. $R = \frac{V}{I} = \frac{7.5}{1.5} = 5.0 \Omega$	2 marks: arithmetic error
7. $R = \frac{V}{I} = 4.0 \Omega$	1 mark: formula only
8. $R = \frac{V}{I} = \underline{\quad} \Omega$	1 mark: formula only
9. $R = \frac{V}{I} = \frac{7.5}{1.5} = \underline{\quad} \Omega$	2 marks: formula & subs, no final answer
10. $R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	2 marks: formula & subs, wrong answer
11. $R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	1 mark: formula but wrong substitution
12. $R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	1 mark: formula but wrong substitution
13. $R = \frac{I}{V} = \frac{1.5}{7.5} = 5.0 \Omega$	0 marks: wrong formula
14. $V = IR$ $7.5 = 1.5 \times R$ $R = 0.2 \Omega$	2 marks: formula & subs, arithmetic error
15. $V = IR$ $R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	1 mark: formula correct but wrong rearrangement of symbols

Marking instructions for each question

Section 1

Question	Answer	Mark
1.	C	1
2.	D	1
3.	A	1
4.	B	1
5.	A	1
6.	C	1
7.	D	1
8.	B	1
9.	E	1
10.	C	1
11.	B	1
12.	A	1
13.	D	1
14.	D	1
15.	E	1
16.	C	1
17.	D	1
18.	D	1
19.	E	1
20.	C	1