Electrolysis

Question Paper 3

Level	Pre U	
Subject	Chemistry	
Exam Board	Cambridge International Examinations	
Topic	Electrolysis- Equilibria	
Booklet	Question Paper 3	

Time Allowed: 59 minutes

Score: /49

Percentage: /100

Grade Boundaries:

	nen aqueous barium chloride is added to a solution containing sulfate ions a itate of barium sulfate is formed. This white precipitate is very sparingly soluble in water.
(i)	Write the ionic equation, including state symbols, for the formation of the white precipitate.
(ii)	Write the expression for the solubility product <i>K</i> of barium sulfate
(")	Write the expression for the solubility product, $K_{\rm sp}$, of barium sulfate.
	[1]
(iii)	Given that the value of $K_{\rm sp}$ for barium sulfate is 1.08 × 10 ⁻¹⁰ at 298K, calculate the concentration of sulfate ions in a saturated solution of barium sulfate. Give your answer to three significant figures.
	moldm ⁻³ [2]
(iv)	Regulations state that the maximum permitted level of sulfate ions in drinking water is $250 \text{mg}\text{dm}^{-3}$ (1 mg = 1 x 10^{-3}g).
	200 cm ³ of aqueous barium chloride solution was added to 300 cm ³ of drinking water and a white precipitate formed. Assume that the sample of water contained the maximum permitted level of sulfate ions. Calculate the minimum concentration, in mol dm ⁻³ , of barium chloride in the solution that was added to the sample of drinking water.

..... moldm⁻³ [3]

(b)	The electrode potential of silver in contact with a solution of silver ions, Ag ⁺ (aq), is impossible to measure directly but can be measured using a standard hydrogen electrode.		
	Using this method, the standard electrode potential of silver, E^{e} , is found to be +0.80 V.		
	(i)	Complete the cell diagram for the cell used to measure the standard electrode potential of silver. State the concentration of $H^+(aq)$ used.	
		H ₂ (g) 2H ⁺ (aq)	
		concentration of $H^+(aq) = \dots mol dm^{-3}$ [3]	
	(ii)	When an excess of sodium chloride solution is added to the right-hand half-cell the silver ions will be precipitated as solid silver chloride, AgC <i>l</i> . Use Le Chatelier's principle to explain qualitatively how the cell emf will change as a result.	
		[2]	
	(iii)	At 298 K, the expression below can be used to calculate the concentration of silver ions in solution under non-standard conditions, from a measurement of the electrode potential.	
		$E = E^{-9} - 0.030 \log \frac{1}{[Ag^{+}(aq)]^2}$	
		E = electrode potential of silver under non-standard conditions E^{\oplus} = standard electrode potential of silver = +0.80 V	
		The addition of excess aqueous sodium chloride, NaC $l(aq)$, to the right-hand half-cell results in a chloride ion concentration of 2.1 mol dm ⁻³ .	
		Given that $K_{\rm sp}$ for silver chloride, AgC l , is 1.8 \times 10 ⁻¹⁰ at 298 K, calculate the value of E , in the cell shown in (b)(i) , after the addition of the excess aqueous sodium chloride to the right-hand half-cell.	
		<i>E</i> =V [3]	

[Total: 15]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2. The use of methanol, CH₃OH, in fuel cells is the subject of considerable research. A commercial production of methanol involves a two step process.

Step 1 production of hydrogen gas

equation 4.1
$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g) \qquad \Delta_r H^{\oplus} = +206 \text{ kJ mol}^{-1}$$

A temperature of 850 °C and pressure of 1500 kPa are used in this step.

Step 2 reaction of hydrogen and carbon monoxide to form methanol

equation 4.2
$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta_r H^{\oplus} = -92 \text{ kJ mol}^{-1}$

A temperature of 300 °C and pressure of 7500 kPa are used in this step, with a catalyst of $\rm ZnO/CrO_3$.

- (a) (i) Write an expression for the equilibrium constant, K_n , for the reaction in equation 4.2.
 - (ii) After the reaction shown in equation 4.2 had reached equilibrium, a mixture of gases was extracted. It contained 38.0 g of hydrogen, 462 g of carbon monoxide and 7200 g of methanol.

Calculate the mole fraction of each gas in the mixture.

(iii) Use your values from (a)(ii) to calculate the value of the equilibrium constant, K_p , for the reaction shown in equation 4.2.

$$K_p =[2]$$

[1]

(b)	(i)	Elevated temperatures are used in both steps, with the temperature used in step 1 being much higher than in step 2.
		Explain why.
		[3]
	(ii)	Pressures higher than atmospheric are used in both steps, with the pressure used in step 2 being much higher than in step 1.
		Explain why.
		[3]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

standard cell potential =V [2]

(d)	One method for the construction of a DMFC involves electroplating a layer of platinum onto the surface of the proton exchange membrane, PEM. The electrolyte for this process consists of a solution of tetraammineplatinum(II) chloride, $Pt(NH_3)_4Cl_2$, and the PEM is the cathode in the electrolytic cell.		
	(i)	State the shape and bond angle of the tetraammineplatinum(II) ion, $[Pt(NH_3)_4]^{2+}$.	
		shape	
		bond angle[1]	
	(ii)	Suggest the half-equation for the cathode reaction that deposits platinum on the PEM.	
		[1]	
(e)		one such preparation a PEM with a surface area of $25\mathrm{cm}^2$ was immersed in an strolyte bath and a current of $3.5\times10^{-3}\mathrm{Acm}^{-2}$ was passed for 95 minutes.	
	Cald	culate the mass of platinum deposited onto the surface of the PEM.	

[3]

[Total: 19]

			· · · · · · · · · · · · · · · · · · ·
3.	(a)		nen aqueous barium chloride is added to a solution containing sulfate ions a white cipitate of barium sulfate is formed. This white precipitate is very sparingly soluble in er.
		(i)	Write the ionic equation, including state symbols, for the formation of the white precipitate.
			[1]
		(ii)	Write the expression for the solubility product, $\mathcal{K}_{\mathrm{sp}}$, of barium sulfate.
			[1]
		(iii)	Given that $K_{\rm sp}$ for barium sulfate is $1.08 \times 10^{-10} \rm mol^2 dm^{-6}$ at 298 K, calculate the concentration of sulfate ions in a saturated solution of barium sulfate. Give your answer to three significant figures.
			moldm ⁻³ [2]
		(iv)	Regulations state that the maximum permitted level of sulfate ions in drinking water is $250\text{mg}\text{dm}^{-3}$ (1 mg = 1 x 10^{-3}g).
			200 cm ³ of aqueous barium chloride was added to 300 cm ³ of drinking water and a white precipitate formed. Assume that the sample of water contained the maximum permitted level of sulfate ions. Calculate the minimum concentration, in mol dm ⁻³ , of barium chloride in the solution that was added to the sample of drinking water.

 \dots moldm⁻³ [3]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b)	imp elec	electrode potential of silver in contact with a solution of silver ions, $Ag^+(aq)$, is ossible to measure directly but can be measured using a standard hydrogen strode. Using this method the standard electrode potential of silver, E^{θ} , is found to be 30 V.
	(i)	Complete the cell diagram in Fig. 2.1 for the cell used to measure the standard electrode potential of silver. State the concentration of $H^+(aq)$ used.
		H ₂ (g) 2H ⁺ (aq)
		Fig. 2.1
		concentration of H ⁺ (aq) =[3]
	(ii)	When an excess of aqueous sodium chloride is added to the right-hand half-cell the silver ions will be precipitated as solid silver chloride, AgC <i>l.</i> Use Le Chatelier's principle to explain qualitatively how the cell emf will change as a result.
		[2]
((iii)	At 298K the expression below can be used to calculate the concentration of silver ions in solution under non-standard conditions, from a measurement of the electrode potential.
		$E = E^{\Theta} - 0.030 \log \frac{1}{[Ag^{+}(aq)]^{2}}$
		E = electrode potential of silver under non-standard conditions E^{\oplus} = standard electrode potential of silver = +0.80 V
		The addition of excess aqueous sodium chloride, NaC l (aq), to the right-hand half-cell results in a chloride ion concentration of 2.1 mol dm $^{-3}$.

Given that $K_{\rm sp}$ for silver chloride, AgC l, is $1.8 \times 10^{-10}\,{\rm mol^2\,dm^{-6}}$ at 298 K, calculate the value of E, in the cell shown in Fig. 2.1, after the addition of the excess aqueous

sodium chloride to the right-hand half-cell.

E=V [3]

[Total: 15]