Integration Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Integration
Booklet	Question Paper

Time Allowed: 108 minutes
Score: /90
Percentage: /100

Grade Boundaries:

1 (a) Show that $\int_{0}^{2} \frac{x}{x^{2}+5} \mathrm{~d} x=\ln \left(\frac{3}{\sqrt{5}}\right)$.
(b) Find $\int x \sqrt{x-2} \mathrm{~d} x$.

2 (i) Find $\int\left(3 x^{2}-4 x+8\right) \mathrm{d} x$.
(ii) Hence find $\int_{1}^{3}\left(3 x^{2}-4 x+8\right) \mathrm{d} x$.

3 (i) Given that $\frac{2 x+11}{(2 x+1)(x+3)} \equiv \frac{A}{2 x+1}+\frac{B}{x+3}$, find the values of the constants A and B.
(ii) Hence show that $\int_{0}^{2} \frac{2 x+11}{(2 x+1)(x+3)} \mathrm{d} x=\ln 15$.

4 (i) Use integration by parts to show that $\int \ln x \mathrm{~d} x=x \ln x-x+c$.
(ii) Find
(a) $\int(\ln x)^{2} \mathrm{~d} x$,
(b) $\int \frac{\ln (\ln x)}{x} \mathrm{~d} x$.

5 Find the exact value of $\int_{0}^{1}\left(\mathrm{e}^{x}-x\right) \mathrm{d} x$.

6
(i) (a) Find $\int \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \mathrm{~d} x$.
(b) Hence evaluate $\int_{0}^{\ln 3} \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \mathrm{~d} x$, giving your answer in the form $\ln k$, where k is an integer.
(ii) (a) Using the substitution $u=1+\mathrm{e}^{x}$, find $\int\left(\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}\right)^{2} \mathrm{~d} x$.
(b) Hence find the exact volume of the solid of revolution generated when the curve given by $y=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}$, between $x=-\ln 3$ and $x=\ln 3$, is rotated through 2π radians about the x-axis.

7 A circle has equation $x^{2}+y^{2}=16$. Find the volume generated when the region in the first quadrant which is bounded by the circle and the lines $x=1$ and $x=2$ is rotated through 2π radians about the x-axis.

8 Use integration by parts to find $\int x \sin 3 x \mathrm{~d} x$.

9 (i) Using the substitution $u=x^{2}$, or otherwise, find the numerical value of

$$
\begin{equation*}
\int_{0}^{\sqrt{\ln 4}} x \mathrm{e}^{-\frac{1}{2} x^{2}} \mathrm{~d} x \tag{4}
\end{equation*}
$$

(ii) Determine the exact coordinates of the stationary points of the curve $y=x \mathrm{e}^{-\frac{1}{2} x^{2}}$.

10 Using the substitution $u=1+\sqrt{x}$, or otherwise, find $\int \frac{1}{1+\sqrt{x}} \mathrm{~d} x$ giving your answer in terms of x.

11 Find the exact value of

$$
\begin{equation*}
\int_{1}^{4}\left(10 x^{\frac{3}{2}}-3 x^{\frac{1}{2}}\right) \mathrm{d} x \tag{3}
\end{equation*}
$$

12 (i) Show that

$$
\int_{1}^{a} x^{n} \ln x \mathrm{~d} x=\frac{a^{n+1}}{(n+1)^{2}}((n+1) \ln a-1)+\frac{1}{(n+1)^{2}}
$$

where $n \neq-1$ and $a>1$.
(ii) (a) Determine the x-coordinate of the point of intersection of the curves $y=x^{2} \ln x$ and $y=x \ln 2^{x}$, where $x>0$.
(b) Find the exact value of the area of the region enclosed between these two curves, the line $x=1$ and their point of intersection. Express your answer in the form $b+c \ln 2$, where b and c are rational.
(iii) The curve $y=\left(x^{3} \ln x\right)^{0.5}$, for $1<x<\mathrm{e}$, is rotated through 2π radians about the x-axis. Determine the value of the resulting volume of revolution, giving your answer correct to 4 significant figures.

