For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Vector Geometry

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Vector Geometry
Booklet	Question Paper

Time Allowed: 52 minutes

Score: /43

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

The points A and B have position vectors **a** and **b** relative to an origin O, where $\mathbf{a} = 5\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = -7\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

- (i) Find the length of AB. [3]
- (ii) Use a scalar product to find angle *OAB*. [4]
- 2 Two intersecting straight lines have equations

$$\frac{x-5}{4} = \frac{y-11}{3} = \frac{z-7}{-5}$$
 and $\frac{x-9}{-2} = \frac{y-4}{1} = \frac{z+4}{4}$.

[6]

Find the coordinates of their point of intersection.

3 Vectors **u** and **v** are given by $\mathbf{u} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$.

(i) Find
$$\mathbf{u} + \mathbf{v}$$
 and $\mathbf{u} - \mathbf{v}$. [2]

(ii) Show that
$$|\mathbf{u} + \mathbf{v}| = |\mathbf{u} - \mathbf{v}|$$
. [2]

- 4 Three points A, B and C have coordinates (1, 0, 7), (13, 9, 1) and (2, -1, -7) respectively.
 - (i) Use a scalar product to find angle *ACB*. [5]
 - (ii) Hence find the area of triangle ACB. [2]
 - (iii) Show that a vector equation of the line *AB* is given by $\mathbf{r} = \mathbf{i} + 7\mathbf{k} + \lambda(4\mathbf{i} + 3\mathbf{j} 2\mathbf{k})$, where λ is a scalar parameter.
- 5 (i) Given that the point (-1, -2, 4) lies on both the lines

$$\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ a \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ b \end{pmatrix} + \mu \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$,

find a and b. [3]

(ii) Find the acute angle between the lines. [4]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- The points A and B have position vectors $\mathbf{i} \mathbf{j} + \mathbf{k}$ and $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ respectively, relative to the origin O. The point C is on the line OA extended so that $\overrightarrow{AC} = 2\overrightarrow{OA}$ and the point D is on the line OB extended so that $\overrightarrow{BD} = 3\overrightarrow{OB}$. The point X is such that OCXD is a parallelogram.
 - (i) Show that a vector equation of the line AX is $\mathbf{r} = \mathbf{i} \mathbf{j} + \mathbf{k} + \lambda(5\mathbf{i} + \mathbf{j} + 7\mathbf{k})$ and find an equation of the line CD in a similar form. [5]
 - (ii) Prove that the lines AX and CD intersect and find the position vector of their point of intersection. [4]