Complex Numbers
 Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Complex Numbers
Booklet	Question Paper

Time Allowed: 71 minutes

Score: /59
Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 The complex number $3-4 \mathrm{i}$ is denoted by z. Giving your answers in the form $x+\mathrm{i} y$, and showing clearly how you obtain them, find

$$
\text { (i) } 2 z+z^{*} \text {, }
$$

(ii) $\frac{5}{z}$.
(iii) Show z and z^{*} on an Argand diagram.

2 A root of the equation $z^{2}+p z+q=0$ is $3+\mathrm{i}$, where p and q are real. Write down the other root of the equation and hence calculate the values of p and q.

3 (i) Express $z^{4}+3 z^{2}-4$ in the form $\left(z^{2}+a\right)\left(z^{2}+b\right)$ where a and b are real constants to be found.
(ii) Hence draw an Argand diagram showing the points that represent the roots of the equation $z^{4}+3 z^{2}-4=0$.

4 The complex number z is given by $-20+21$ i. Showing all your working,
(i) find the value of $|z|$,
(ii) calculate the value of $\arg z$ correct to 3 significant figures,
(iii) express $\frac{1}{z}$ in the form $x+\mathrm{i} y$, where x and y are real numbers.

5 (i) Verify that $z=-1$ is a root of the equation $z^{3}+5 z^{2}+9 z+5=0$.
(ii) Find the two complex roots of the equation $z^{3}+5 z^{2}+9 z+5=0$.
(iii) Show all three roots on an Argand diagram.

6 The roots of the equation $z^{2}-6 z+10=0$ are z_{1} and z_{2}, where $z_{1}=3+\mathrm{i}$.
(i) Write down the value of z_{2}.
(ii) Show z_{1} and z_{2} on an Argand diagram.
(iii) Show that $z_{1}^{2}=8+6 \mathrm{i}$.

7 (a) The complex number z is such that $|z|=2$ and $\arg z=-{ }^{2} \quad{ }_{3} \pi$. Find the exact value of the real part of z and of the imaginary part of z.
(b) The complex numbers u and v are such that

$$
\begin{equation*}
u=1+\mathrm{i} a \quad \text { and } \quad v=b-\mathrm{i} \tag{7}
\end{equation*}
$$

where a and b are real and $a<b$. Given that $u v=7+9 \mathrm{i}$, find the values of a and b.

8 (a) Solve the equation

$$
\begin{equation*}
(2+\mathrm{i}) z=(4+\mathrm{i} n) . \tag{4}
\end{equation*}
$$

Give your answer in the form $a+\mathrm{i} b$, expressing a and b in terms of the real constant n.
(b) The roots of the equation $z^{2}+8 z+25=0$ are denoted by z_{1} and z_{2}.
(i) Find z_{1} and z_{2} and show these roots on an Argand diagram.
(ii) Find the modulus and argument in radians of each of $\left(z_{1}+1\right)$ and $\left(z_{2}+1\right)$.

9 It is given that

$$
y=\frac{1}{x+\mathrm{i}}+\frac{1}{x-\mathrm{i}},
$$

where x and y are real and positive, and $\mathrm{i}^{2}=-1$.
(i) Show that

$$
x=\frac{1 \pm \sqrt{1-y^{2}}}{y} \quad \text { and } \quad y \leqslant 1 .
$$

(ii) Deduce that

$$
x y<2 \text {. }
$$

(iii) Indicate the region in the $x-y$ plane defined by

$$
y \leqslant 1 \quad \text { and } \quad x y<2 .
$$

