RECOGNISING ACHIEVEMENT
GCE

Physics A

Unit G484: The Newtonian World

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2012

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 08707706622
Facsimile: 01223552610
E-mail:
publications@ocr.org.uk

Annotations

Annotation	Meaning
[Tin	Benefit of doubt given
[c]l	Contradiction
3	Incorrect response
[-1]	Error carried forward
\square	Follow through
[DKG]	Not answered question
-	Benefit of doubt not given
파TT	Power of 10 error
-	Omission mark
ㅁ:7	Rounding error
$\Gamma \mathrm{F}$	Error in number of significant figures
\checkmark	Correct response
\square	Arithmetic error
4	Wrong physics or equation

The abbreviations, annotations and conventions used in the detailed mark scheme are:

Annotation	Meaning
(1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Statements which are irrelevant
()	Whswers that can be accepted
ecf	Underlined words must be present in answer to score a mark
AW	Alternative wording carried forward
ORA	Or reverse argument

Subject-specific Marking Instructions

Q2a, Q2bii, Q3bi, Q5a should be full annotated on all scripts. Ticks are preferred on all questions where credit is given.

Note about significant figures:
If the data given in a question is to 2 sf, then allow answers to 2 or more sf.
If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.
Any exception to this rule will be mentioned in the Guidance Column.

Question			Answer	Marks	Guidance
1	(a)	(i)	Force changes the momentum of / accelerates / decelerates the object	B1	Allow: Change of speed / velocity / direction of motion
-	(b)	(i)	Force x time for which the force acts / duration of collision	B1	Allow: $F \Delta t$ with both symbols defined Not: change of momentum
		(ii)	Area under graph $=$ impulse OR Area $=$ change in momentum final velocity = Area under graph / mass	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: Area under graph $=m v$ OR $\ldots=m(v-u)$ Note: v must be the subject to score this mark
	(c)	(i)	mean force on ball x time $=$ increase in momentum of ball mean force $=\frac{0.058 \times 52}{4.2 \times 10^{-3}}$ $=720(\mathrm{~N})$	C1 A1	Mark for correct substitution Note: Answer to 3 sf is 718 (N) Bald 720 (N) scores 2 marks
		(ii)	momentum change of racket $=$ momentum (change) of ball $M(38-32)=0.058 \times 52$ $\begin{aligned} M & =\frac{0.058 \times 52}{6} \\ & =0.50(\mathrm{~kg}) \end{aligned}$	C1 A1	Allow: use of mean force from c(i) and time 4.2 ms . Possible ECF from c(i) Note: Answer to 3 sf is $0.503(\mathrm{~kg})$ Allow: 0.5 (kg)
		(iii)	The person / hand / arm holding the racket also changes momentum (AW)	B1	Not: references to angles or initial speed of ball
			Total	9	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& Marks \& Guidance \\
\hline 2 \& (a) \& \& \begin{tabular}{l}
acceleration proportional to displacement (from the equilibrium position) \\
and is always acting towards the equilibrium position / the mid-point of the motion (AW)
\end{tabular} \& B1 \& \begin{tabular}{l}
displacement must be spelled correctly to score the mark. \\
Allow: acceleration proportional to distance from equilibrium position with equilibrium spelled correctly for first B1 \\
Allow: 'acceleration is in the opposite direction to displacement' for the second B1 mark Use tick or cross on Scoris
\end{tabular} \\
\hline \& (b) \& (i) \& \[
\begin{aligned}
\& v_{\max }=2 \pi f A \quad f=1 / 0.08=12.5 \\
\& v_{\max }=2 \pi\left(\frac{1}{0.080}\right) \times 1.2 \times 10^{-3}\left(=2 \pi \times 12.5 \times 1.2 \times 10^{-3}\right) \\
\& v_{\max }=9.4 \times 10^{-2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \& C1

A1 \& | $\left\{\begin{array}{l} \text { If } A=0.6 \mathrm{~mm} \text { used } \\ v_{\max }=2 \pi\left(\frac{1}{0.080}\right) \times 0.6 \times 10^{-3} \quad(\checkmark) \\ v_{\max }=4.7 \times 10^{-2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad(\checkmark) \end{array}\right\}$ |
| :--- |
| Note: Answer to 3 sf is $9.42 \times 10^{-2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ |
| Allow: 1 mark for $94(.2)\left(\mathrm{m} \mathrm{s}^{-1}\right)$ not converting mm to m |

\hline \& \& (ii) \& This occurs at the highest point (top) of the oscillations When acceleration of plate equals/exceeds free fall acceleration $/ \mathrm{g} / 9.81$

\[
$$
\begin{aligned}
& g=(2 \pi f)^{2} A_{0} \text { hence } A_{0}=\frac{9.81}{\left(2 \pi \times \frac{1}{0.080}\right)^{2}} \\
& A_{0}=1.6 \times 10^{-3}(\mathrm{~m})
\end{aligned}
$$

\] \& A1 \& | Allow: equation with any subject for this mark |
| :--- |
| Note: Answer to 3 sf is $1.59 \times 10^{-3}(\mathrm{~m})$ |

\hline \& (c) \& (i) \& Resonance Driving / drum frequency matches natural frequency (of casing) (AW) \& $$
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 }
\end{aligned}
$$ \&

\hline \& \& (ii) \& | Graph with peak amplitude less than original peak amplitude Similar shape curve with peak at the same or lower frequency than given curve |
| :--- |
| Curve is lower than given curve at all frequencies | \& \[

$$
\begin{aligned}
& \hline \text { M0 } \\
& \text { A1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
$$
\] \& Must see this before subsequent marks can be scored.

\hline \& \& \& Total \& 12 \&

\hline
\end{tabular}

Question			Answer	Marks	Guidance
3	(a)	(i)	Arrow (labelled F) directed towards centre of circle	B1	Allow: arrow drawn parallel to the string
		(ii)	Resultant force (F) acts at 90° to motion / velocity of bung so no work done is done by F (hence no change in speed)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: No component of F acts in the direction of motion hence there is no acceleration in the direction of motion (AW) (B1)
	(b)	(i)	Student tries to rotate bung at constant radius / tries to keep reference mark at end of tube (AW) Force F is calculated using $F=M g$. where M is mass of slotted masses Measure time t for n revolutions of the bung (hence calculate T for 1 revolution). Measure radius r when stationary Calculate v using $2 \pi r n / t \quad$ (or $2 \pi r / T$).	B1 B1 B1 B1 B1	Not: bald 'constant radius' Not : F = weight Not: 'take time for 1 revolution'
		(ii)	1 Straight line of positive gradient passing through the origin $2 \quad F=\frac{m}{r} \mathrm{v}^{2} \quad$ hence gradient $=\frac{m}{r}$ Mass = gradient (of graph) x radius (of orbit)	B1 B1 B1	Cannot award this mark if graph is curved Can score this mark if graph is curved
			Total	11	

Question			Answer	Marks	Guidance
4	(a)	(i)	Energy required to raise the temperature of a unit mass of a substance by unit temperature rise.	B1	Allow: $c=\frac{Q}{m \Delta \theta}$ with all symbols defined.
		(ii)	LH of fusion is energy needed to change (a substance) from solid to liquid LH of vaporisation is energy needed to change (a substance) from liquid to gas/vapour	B1	Allow: a single reference to energy (either statement acceptable)
	(b)	(i)	A to B: KE of molecules increases AND PE of molecules (small) increases B to C: KE of molecules remain constant AND PE of molecules increases	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	
		(ii)	$c_{\text {solid }}$ is less than $c_{\text {liquid }}$ Correct reason Eg gradient for solid is greater than gradient for liquid AND gradient is inversely proportional to specific heat capacity (AW)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(c)	(i)	$\begin{align*} & \text { In one second } \\ & \text { volume flowing through }=\left(3.6 \times 10^{-3} / 60\right)=6.0 \times 10^{-5} \\ & \text { mass flowing through }=6.0 \times 10^{-5} \times 1000=\left(6.0 \times 10^{-2}\right) \\ & \text { Energy gained by water } E=m c \Delta \theta=0.060 \times 4200 \times(36.7-17.4) \tag{C1}\\ & \qquad(=4864) \\ & \text { Power of heater }=\mathrm{E} / \mathrm{t}=4864 / 1 \tag{C1}\\ & \text { Power of heater }=4.9 \times 10^{3} \tag{A1}\\ & \qquad \begin{aligned} & \approx \mathrm{kW} \end{aligned} \tag{A0} \end{align*}$	C1 C1 C1 A1 A0	Alternative In one minute volume flowing through $=3.6 \times 10^{-3}$ mass flowing through $=3.6$ Energy gained $\begin{aligned} & E=m c \Delta \theta=3.6 \times 4200 \times(36.7-17.4)(\mathrm{C} 1) \\ &\left(=2.92 \times 10^{5} \mathrm{~J}\right) \\ & \text { Power } \quad=\mathrm{E} / \mathrm{t}=2.92 \times 10^{5} / 60 \\ & \text { Power of heater }=4.9 \times 10^{3} \\ & \approx 5 \mathrm{~kW} \end{aligned}$
		(ii)	EITHER rate of flow of water changes because water pressure changes OR Inlet temperature changes because ambient temperature changes	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
			Total	12	

Question			Answer	Marks	Guidance
5	(a)		Gas molecules move in random / erratic / haphazard motion (AW) :	B1	Use tick or cross on Scoris random / erratic / haphazard must be spelled correctly to score the mark.
	(b)	(i)	constant temperature	B1	
		(ii)	$\begin{aligned} & P_{1} V_{1}=P_{2} V_{2} \\ & 350 \times 120 \times(A)=P_{2} \times 55 \times(A) \\ & P_{2}=\frac{350 \times 120}{55} \\ & \quad=760(\mathrm{kPa}) \end{aligned}$	C1 A1	Note: Answer to 3 sf is $764(\mathrm{kPa})$ Note: $7.6 \times 10^{5}(\mathrm{kPa})$ scores 1 mark
		(iii)	When a molecule collides with the (moving) piston it rebounds with higher speed / ke / momentum (Mean) kinetic energy of molecules is proportional / \propto to (Kelvin) temperature	B1 B1	Must refer to collisions with piston or rebounds from piston not collisions within gas molecules. Allow: $E_{k}=3 k T / 2$ without definition of terms.
			Total	6	

Question			Answer	Marks	Guidance
6	(a)	(i)	Force between two (point) masses is proportional to the product of masses and inversely proportional to the square of the distance between them	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Not: radius Allow: $F=G M m / r^{2} \quad$ B1 All symbols defined B1
		(ii)	Force per (unit) mass	B1	Allow: $g=F / m$ with symbols defined
	(b)	(i)	$\begin{aligned} & v=\frac{2 \pi R}{T} \\ & v=\frac{2 \pi \times 1.2 \times 10^{9}}{16 \times 86400} \\ & v=5.5 \times 10^{3} \quad\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	C1 A1	Note: Answer to 3 sf is 5.45×10^{3} Allow: 1 mark for 4.7×10^{8} not converting days to s Allow: 1 mark for 5.5 not converting km to m
		(ii)	$\begin{aligned} & m_{T} \frac{v^{2}}{r}=\frac{G M_{S} m_{T}}{r^{2}} \\ & M_{S}=\frac{v^{2} r}{G} \\ & M_{S}=\frac{\left(5.45 \times 10^{3}\right)^{2} \times 1.2 \times 10^{9}}{6.67 \times 10^{-11}} \\ & M=5.3 \times 10^{26}(\mathrm{~kg}) \end{aligned}$	C1 C1 A1	Allow: alternative method using Kepler's third law Possible ECF from b (i) Note: An answer of 5.3×10^{26} (or 5.4×10^{26}) without substitution shown scores 2 marks since this is a 'show' question. Note: Use of 5.5×10^{3} gives $5.4 \times 10^{26}(\mathrm{~kg})$
	(c)		Reference to $T^{2}=\left(4 \pi^{2} / G M\right) r^{3}$ OR $T^{2} \propto r^{3}$ $\frac{T_{R}}{T_{T}}=\sqrt{\frac{r_{R}^{3}}{r_{T}^{3}}} \quad \text { OR } \quad \frac{T_{R}}{T_{T}}=\left(\frac{r_{R}}{r_{T}}\right)^{\frac{3}{2}}$	B1 B1	Not: $\left(\frac{T_{R}}{T_{T}}\right)^{2}=\left(\frac{r_{R}}{r_{T}}\right)^{3}$
			Total	10	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

