Force and Equilibrium Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Mechanics- Force and Equilibrium
Booklet	Question Paper

Time Allowed:
Score:
Percentage:
49 minutes
/41
/100

Grade Boundaries:

The diagram shows two horizontal forces \mathbf{P} and \mathbf{Q} acting at the origin O of rectangular coordinates $O x y$. The components of \mathbf{P} in the x - and y-directions are 12 N and 17 N respectively. The components of \mathbf{Q} in the x - and y-directions are -5 N and 7 N respectively.
(i) Write down the components, in the x - and y-directions, of the resultant of \mathbf{P} and \mathbf{Q}.
(ii) Hence, or otherwise, calculate the magnitude of this resultant and the angle the resultant makes with the positive x-axis.

Particles A and B of masses $2 m$ and m, respectively, are attached to the ends of a light inextensible string. The string passes over a smooth fixed pulley P. The particle A rests in equilibrium on a rough plane inclined at an angle α to the horizontal, where $\alpha \leqslant 45^{\circ}$ and B is above the plane. The vertical plane defined by $A P B$ contains a line of greatest slope of the plane, and $P A$ is inclined at angle 2α to the horizontal (see diagram).
(i) Show that the normal reaction R between A and the plane is $m g(2 \cos \alpha-\sin \alpha)$.
(ii) Show that $R \geqslant \frac{1}{2} m g \sqrt{2}$.

The coefficient of friction between A and the plane is μ. The particle is about to slip down the plane.
(iii) Show that $0.5<\tan \alpha \leqslant 1$.
(iv) Express μ as a function of $\tan \alpha$ and deduce its maximum value as α varies.

3 A particle is being held in equilibrium by the following set of forces (in newtons).

$$
\mathbf{F}_{1}=5 \mathbf{i}-8 \mathbf{j}, \quad \mathbf{F}_{2}=-3 \mathbf{i}-4 \mathbf{j}, \quad \mathbf{F}_{3}=6 \mathbf{i}+6 \mathbf{j} \quad \text { and } \quad \mathbf{F}_{4} .
$$

(i) Find \mathbf{F}_{4} in terms of \mathbf{i} and \mathbf{j}.
(ii) Hence find the magnitude and direction of \mathbf{F}_{4}.

4

The diagram shows two forces of magnitudes 10 N and 15 N acting in a horizontal plane on a particle P.
(i) Find the component of the 15 N force which is parallel to the 10 N force.
(ii) Write down the component of the 15 N force which is perpendicular to the 10 N force.
(iii) Hence, or otherwise, calculate the magnitude and direction of the resultant force on P.
$5 \quad$ Two forces \mathbf{F}_{1} and \mathbf{F}_{2} are given by

$$
\mathbf{F}_{1}=13 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k}, \quad \mathbf{F}_{2}=-2 \mathbf{i}+6 \mathbf{j}+\mathbf{k},
$$

in which the units of the components are newtons. A third force, \mathbf{F}_{3}, of magnitude 6 N acts parallel to the vector $2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
(i) Find the two possible resultants of $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3}, and show that they have the same magnitude.

A particle, P, of mass 2 kg is initially at rest at the origin. The only forces acting on P are \mathbf{F}_{1} and \mathbf{F}_{2}.
(ii) Find the magnitude of the acceleration of P.
(iii) Find the time taken for P to travel 60 m .

