Friction

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Mechanics- Friction
Booklet	Question Paper

Time Allowed: 25 minutes

Score: /21

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Two trucks, S and T, of masses 8000 kg and 10 000 kg respectively, are pulled along a straight, horizontal track by a constant, horizontal force of PN. A resistive force of 600N acts on S and a resistive force of 450N acts on T. The coupling between the trucks is light and horizontal (see diagram).

The acceleration of the system is $0.3 \,\mathrm{ms}^{-2}$ in the direction of the pulling force of magnitude P.

(i) Calculate the value of P.

[2

Truck S is now subjected to an extra resistive force of 1800 N. The pulling force, P, does not change.

(ii) Calculate the new acceleration of the trucks.

[2]

[2]

[1]

- (iii) Calculate the force in the coupling between the trucks.
- 2 A particle of mass m kg rests in equilibrium on a rough horizontal table. There is a string attached to the particle. The tension in the string is T N at an angle of θ to the horizontal, as shown in the diagram.

- (i) Copy and complete the diagram to show all the forces acting on the particle.
- (ii) The coefficient of friction between the particle and the table is μ and the particle is on the point of slipping. Show that $T = \frac{\mu mg}{\cos \theta + \mu \sin \theta}$. [4]
- (iii) Given that $\mu = 0.75$, find the value of θ for which T is a minimum. [4]

3

The diagram shows a block of wood, weighing $100 \,\mathrm{N}$, at rest on a rough plane inclined at 35° to the horizontal. The coefficient of friction between the block and the plane is 0.2. A force of $P \,\mathrm{N}$ acts on the block up the slope.

- (i) Find the maximum possible value of the friction acting on the block. [2]
- (ii) Given that the block is on the point of moving up the slope, find P. [2]
- (iii) Given that the block is on the point of moving down the slope, find P. [2]