Friction

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Mechanics- Friction
Booklet	Question Paper

Time Allowed:
25 minutes
Score:
/21
Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 Two trucks, S and T, of masses 8000 kg and 10000 kg respectively, are pulled along a straight, horizontal track by a constant, horizontal force of $P \mathrm{~N}$. A resistive force of 600 N acts on S and a resistive force of 450 N acts on T. The coupling between the trucks is light and horizontal (see diagram).

The acceleration of the system is $0.3 \mathrm{~ms}^{-2}$ in the direction of the pulling force of magnitude P.
(i) Calculate the value of P.

Truck S is now subjected to an extra resistive force of 1800 N . The pulling force, P, does not change.
(ii) Calculate the new acceleration of the trucks.
(iii) Calculate the force in the coupling between the trucks.

2 A particle of mass $m \mathrm{~kg}$ rests in equilibrium on a rough horizontal table. There is a string attached to the particle. The tension in the string is $T \mathrm{~N}$ at an angle of θ to the horizontal, as shown in the diagram.

(i) Copy and complete the diagram to show all the forces acting on the particle.
(ii) The coefficient of friction between the particle and the table is μ and the particle is on the point of slipping. Show that $T=\frac{\mu m g}{\cos \theta+\mu \sin \theta}$.
(iii) Given that $\mu=0.75$, find the value of θ for which T is a minimum.

The diagram shows a block of wood, weighing 100 N , at rest on a rough plane inclined at 35° to the horizontal. The coefficient of friction between the block and the plane is 0.2 . A force of $P \mathrm{~N}$ acts on the block up the slope.
(i) Find the maximum possible value of the friction acting on the block.
(ii) Given that the block is on the point of moving $u p$ the slope, find P.
(iii) Given that the block is on the point of moving down the slope, find P.

