Linear Momentum and Impulse

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Mechanics- Linear Momentum and Impluse
Booklet	Question Paper

Time Allowed: 34 minutes

Score: /28

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1

Three particles A, B and C, having masses of 1 kg, 2 kg and 5 kg respectively, are placed 1 metre apart in a straight line on a smooth horizontal plane (see diagram). The particles B and C are initially at rest and A is moving towards B with speed 14 ms⁻¹. The coefficient of restitution between each pair of particles is 0.5.

- (i) Find the velocity of B immediately after the first impact and show that A comes to rest. [4]
- (ii) Show that B reversed direction after the impact with C. [3]
- (iii) Find the distances between B and C at the instant that B collides with A for the second time. [3]
- A particle A of mass 4m, on a smooth horizontal plane, is moving with speed u directly towards another particle B, of mass 2m, which is at rest. The coefficient of restitution between the two particles is e.
 - (i) Show that, after the collision, the velocity of A is $\frac{1}{3}(2-e)u$ and find the velocity of B. [4]
 - (ii) Hence write down their velocities in the case when $e = \frac{1}{2}$. [1]

Particle B now collides directly with a third particle C, of mass m, which is at rest. The coefficient of restitution in both collisions is $\frac{1}{2}$.

- (iii) Use your answers to part (ii) to find the velocities of A, B and C after the second collision has taken place. [2]
- (iv) Explain briefly whether any further collisions take place. [1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3

Three particles A, B and C, having masses 1 kg, 2 kg and 5 kg, respectively, are placed 1 metre apart in a straight line on a smooth horizontal plane (see diagram). The particles B and C are initially at rest and A is moving towards B with speed $14 \,\mathrm{m \, s^{-1}}$. The coefficient of restitution between each pair of particles is 0.5.

- (i) Find the velocity of B immediately after the first impact and show that A comes to rest. [4]
- (ii) Show that B reverses direction after an impact with C. [3]
- (iii) Find the distance between B and C at the instant that B collides with A for the second time. [3]